Remember to download and put into data subdirectory:
Load the following into browser window:
Set-up R Console:
library(raster)
library(ggplot2)
raster
import and structure
- Spatial data is often organized in a
raster
.- gridded format (like coordinates)
- each pixel is a value
- most remote sensing and environmental data
-
raster()
import - DSM is Digital Surface Model: elevation of top physical point
- See diagram
dsm_harv <- raster("data/neon-airborne/harv_dsmCrop.tif")
- Metadata is important to describe the context of spatial data.
bands
projection
units
min
,max
,mean
Plotting spatial data with ggplot
- Continue using what we’ve been learning
- Useful for making nice maps combined with other figures
Three steps (write on board):
- Do Spatial Work (just importing so far)
- Convert to Data Frame (this is what ggplot works with)
- Make Plots
- Convert using
as.data.frame
(overloaded byraster
to convert spatial data)
dsm_harv_df = as.data.frame(dsm_harv, xy = TRUE)
head(dsm_harv_df)
- Can then plot using
geom_raster
ggplot() +
geom_raster(data = dsm_harv_df,
aes(x = x, y = y, fill = HARV_dsmCrop))
- Because this is a data frame we can treat raster values like they are part of a normal table
ggplot() +
geom_histogram(data = dsm_harv_df,
aes(x = HARV_dsmCrop))
Do Task 1 of Canopy Height from Space.
raster
math
Show > * Canopy Height Model picture
- The DSM data is a Digital Surface Model: elevation of top physical point
- DTM is Digital Terrain Model: elevation of the ground
- We can create a Canopy Height Model (CHM) by taking the difference between them
dtm_harv <- raster("data/neon-airborne/harv_dtmcrop.tif")
chm_harv <- dsm_harv - dtm_harv
- Math happens on a cell by cell (elementwise) basis
- Can then graph this new raster by following the three rules
-
- Already did spatial work
-
- Convert to data frame
chm_harv_df = as.data.frame(chm_harv, xy = TRUE)
-
- Make plot
ggplot() +
geom_raster(data = _harv_df,
aes(x = x, y = y, fill = layer))
Do Task 2 of Canopy Height from Space.
Import and reproject shapefiles
vector
data includes points, lines, and polygonsshapefiles
are one main format- set of multiple files
- same name, different extensions
readOGR("directory", "file_name_without_extensions")
- stores data in a single
data.frame
- access ‘attributes’ similar to GIS software using
$
file_name$site_id
- stores data in a single
- set of multiple files
library(rgdal)
plots_harv <- readOGR("data/neon-airborne/plot_locations",
"harv_plots")
- Plot
vector
on top ofraster
chm_harv_df = as.data.frame(chm_harv, xy = TRUE)
plots_harv_df = as.data.frame(plots_harv)
ggplot() +
geom_raster(data = chm_harv_df,
aes(x = x, y = y, fill = layer)) +
geom_point(data = plots_harv_df,
aes(x = coords.x1, y = coords.x2), color = "yellow")
-
Uh oh, nothing happened.
-
Coordinate Reference System (
crs
orprojection
) is different fromraster
.
crs(chm_harv)
crs(plots_harv)
- Change projection:
- reproject
raster
withprojectRaster()
- reproject
vector
withspTransform()
- reproject
plots_harv_utm <- spTransform(plots_harv, crs(chm_harv))
plots_harv_utm_df = as.data.frame(plots_harv_utm)
ggplot() +
geom_raster(data = chm_harv_df,
aes(x = x, y = y, fill = layer)) +
geom_point(data = plots_harv_utm_df,
aes(x = coords.x1, y = coords.x2), color = "yellow")
Do Task 3 of Canopy Height from Space.
Extract raster data
- Use
vector
toextract()
values fromraster
- These are canopy heights from
chm_harv
at the coordinates fromplots_harv_utm
.
plots_chm <- extract(chm_harv, plots_harv_utm)
- Order of values lines up with
plots_harv_utm$plot_id
.
plots_harv_utm$plot_id
plots_chm <- data.frame(plot_num = plots_harv_utm$plot_id, plot_value = plots_chm)
- Often want values surrounding a point, not just the single pixel that the point lands in
- Do this using
buffer
to get the values for all pixels within some buffer distance from the point
extract(chm_harv, plots_harv_utm, buffer = 10)
- This returns one value for each pixel within the buffer region
- Also what output is like for line and polygon data
-
One value for each cell intersected by a line or each cell inside a polygon
- Could keep all of this data, or calculate a value from it
- Often want an average
extract(chm_harv, plots_harv_utm, buffer = 10, fun = mean)
Do Tasks 4-5 of Canopy Height from Space.
Map of point data
- Maps are available in the
maps
package - Maps are typically vector data
library(maps)
us_map = map_data("usa")
- Open
map
- Polygons, but already stored as data frames (already done as.data.frame)
- Coordinates + Group + Order
- Group identifies unique polygons
- Order identifies how the points in each polygon are connected
- Draw a polygon illustrating points, edges, & order
ggplot() +
geom_polygon(data = us_map,
aes(x = long, y = lat, group = group),
fill = "grey")
coord_quickmap
gives us a reasonable projection
ggplot() +
geom_polygon(data = us_map,
aes(x = long, y = lat, group = group),
fill = "grey") +
coord_quickmap()
- Add other data on top
- Data on species occurances using the
spocc
package - Gets data from multiple sources include GBIF
library(spocc)
do_gbif = occ(query = "Dipodomys ordii",
from = "gbif",
limit = 1000,
has_coords = TRUE)
do_data = data.frame(dipo_df$gbif$data)
ggplot() +
geom_polygon(data = us_map,
aes(x = long, y = lat, group = group),
fill = "grey") +
geom_point(data = do_data,
aes(x = Dipodomys_ordii.longitude,
y = Dipodomys_ordii.latitude)) +
coord_quickmap()
Namespacing
library(dplyr)
library(raster)
raster
’sselect
function overwritesdplyr
’sselect
function- Demo error
select(do_data, Dipodomys_ordii.latitude)
- To use
dplyr
’s function
dply::select(do_data, Dipodomys_ordii.latitude)
Making your own vector data
- Make spatial data from from non-spatial data with latitudes and longitudes
- Do to combine with other spatial data
- Need to know the
proj4string
for standard latitude/longitude data "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
points_crs <- crs("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")
do_data_spat <- SpatialPointsDataFrame(
do_data[c('Dipodomys_ordii.longitude', 'Dipodomys_ordii.latitude')],
do_data,
proj4string = points_crs)
str(do_data_spat)
do_data
was a regular data frame, so do the same thing with your down data after loading it usingread.csv
- Now you can do things like reproject and
extract
values from rasters