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Abstract 

Background Controlling the spread of infectious diseases―even when safe, transmission‑blocking vaccines are 
available―may require the effective use of non‑pharmaceutical interventions (NPIs), e.g., mask wearing, testing, limits 
on group sizes, venue closure. During the SARS‑CoV‑2 pandemic, many countries implemented NPIs inconsistently 
in space and time. This inconsistency was especially pronounced for policies in the United States of America (US) 
related to venue closure.

Methods Here, we investigate the impact of inconsistent policies associated with venue closure using mathemati‑
cal modeling and high‑resolution human mobility, Google search, and county‑level SARS‑CoV‑2 incidence data 
from the USA. Specifically, we look at high‑resolution location data and perform a US‑county‑level analysis of nearly 8 
million SARS‑CoV‑2 cases and 150 million location visits, including 120 million church visitors across 184,677 churches, 
14 million grocery visitors across 7662 grocery stores, and 13.5 million gym visitors across 5483 gyms.

Results Analyzing the interaction between venue closure and changing mobility using a mathematical model shows 
that, across a broad range of model parameters, inconsistent or partial closure can be worse in terms of disease trans‑
mission as compared to scenarios with no closures at all. Importantly, changes in mobility patterns due to epidemic 
control measures can lead to increase in the future number of cases. In the most severe cases, individuals traveling 
to neighboring jurisdictions with different closure policies can result in an outbreak that would otherwise have 
been contained. To motivate our mathematical models, we turn to mobility data and find that while stay‑at‑home 
orders and closures decreased contacts in most areas of the USA, some specific activities and venues saw an increase 
in attendance and an increase in the distance visitors traveled to attend. We support this finding using search query 
data, which clearly shows a shift in information seeking behavior concurrent with the changing mobility patterns.

Conclusions While coarse‑grained observations are not sufficient to validate our models, taken together, they 
highlight the potential unintended consequences of inconsistent epidemic control policies related to venue clo‑
sure and stress the importance of balancing the societal needs of a population with the risk of an outbreak growing 
into a large epidemic.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2, the virus that causes COVID-19) has swept the 
globe, revealing the strengths and weaknesses of our 
international, national, state, and local public health sys-
tems  [1]. Evidence from countries such as Vietnam  [2], 
Thailand  [3], Singapore  [4], South Korea  [5], New Zea-
land [6], China [7], and others [8] have shown that coor-
dinated, national-level policies can control SARS-CoV-2 
transmission. However, in many locations—in particu-
lar the USA—initial efforts to stem the spread of SARS-
CoV-2 using non-pharmaceutical interventions (NPIs) 
were implemented as a patchwork of self-isolation, 
school closures, and business restrictions  [9, 10]. For 
example, throughout the months of March and April 
2020, US states, counties, and cities often independently 
implemented stay-at-home orders, mask mandates, lim-
its on gathering sizes, etc. [11]. May and June 2020 saw 
nearly all states begin to reopen leading to increased 
cases through July, August, and September of that year 
and in turn leading again to restrictions/venue closure 
in half a dozen states including New York, California, 
and Texas  [12]. Over the course of the next 2.5 years, 
NPI policies in the USA continued to be recommended, 
imposed, and lifted inconsistently [10, 13].

Even in countries with more uniform policies, some 
activities were the subject of much debate as the local 
risks associated with the activity  [14–16] clashed with 
protections of the activity as an essential service to indi-
viduals and the community  [17]. For example, religious 
activities, including choirs and large services, in particu-
lar have led to many super-spreading events [18], with 
attack rates well-above 50% in some cases [19]. However, 
in certain cases, individuals have defied church closures 
and attended mass gatherings, leading to legal prosecu-
tion  [20, 21]. Other essential services have seen similar 
patterns, with public spaces such as urban and suburban 
parks and trails also being the subject of inconsistent visi-
tation patterns and closures. Data shows that when some, 
but not all, parks and trails close, individuals may travel 
further to areas remaining open [22]. Although it is now 
clear that transmission risk in outdoor settings is typi-
cally low [23, 24].

Numerous studies have demonstrated that even incon-
sistently applied NPIs had pronounced local effects 
on case rates, hospitalizations, and mortality during 
COVID-19 pandemic  [25–27]. For example, testing at 
colleges and universities reduced case burden both on 
campus and in surrounding counties [28], eviction mora-
toria reduced urban transmission [29], NPIs meant to 
control SARS-CoV-2 transmission also reduced influ-
enza burden by as much as 60% [30–32], shelter-in-place 
orders led to reduced mortality [13, 33], and variability 

in mask-wearing was associated with variability in SARS-
CoV-2 case rates  [34, 35]. What remains less clear is 
whether variability in NPI policies/adoption related 
to venue closure effects population-level aspects of an 
epidemic.

Here, we develop a simple mathematical model for 
studying the effect of non-uniform public health policies 
related to venue closure on the spread of an epidemic in 
a single population. With this model, we show how―for 
certain real-world parameter ranges―no closures can 
be better for epidemic control than inconsistent closure 
policies. Next, we study a model of epidemics with par-
tial gathering restrictions― and partial adoption of said 
restrictions―over a mobility network of interconnected 
populations. To motivate future work on the mechanisms 
behind our models, we then examine online information 
seeking and physical foot traffic data to see how gather-
ing-specific behavior has varied across the USA during 
the COVID-19 pandemic. With these data, we investigate 
how movement patterns changed during local business 
closure. We discuss the implications of these results espe-
cially as they relate to current discussions around how 
global societies should plan for and respond to resurgent 
COVID-19 waves driven by novel SARS-CoV-2 variants.

Methods
Simple mathematical framework: the cloSIR model
To explore the consequences of inconsistent epidemic 
control policies related to venue closure, we formulate 
a simple, mathematical model which we call cloSIR to 
couple disease dynamics with closure policies. As a first 
approximation, we take a mean-field perspective and 
ignore any spatial features or contact structure, which 
allows us to focus on the average dynamics of gatherings 
within a population.

We model an epidemic in a population of N individu-
als uniformly distributed across M gatherings of size 
N/M, and no mixing between gatherings occurs other 
than a single redistribution event after some gatherings 
are closed. We assume that a fraction X of gatherings 
are closed at time tc to help contain an outbreak and 
that a fraction Y of members in closed gatherings then 
decide to defy the closure by traveling to one of the 
remaining open gatherings at random, thereby increas-
ing the number of interacting individuals in gatherings 
which remain open. These open gatherings could be 
under a different set of rules in a different location or 
the venue/location itself may be defying government 
restrictions. Closures therefore protect the local com-
munity in compliance with the closures, but can poten-
tially increase opportunities for transmission in any 
open venues.
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We track susceptible-infectious-recovered (SIR) 
dynamics within a typical open/closed gathering by 
assuming that the natural normalized transmission rate 
of the disease is � (with a recovery rate equal to 1 for 
time units set to the recovery period). We use So/c , Io/c , 
and Ro/c to denote the number of susceptible, infec-
tious, and recovered individual in a typical open/closed 
gathering, respectively. Applying standard SIR dynam-
ics in open gatherings but removing transmission 
events in closed gatherings, we write

The critical part of the cloSIR model is the implemen-
tation of closure policies at time tc . At time t < tc , all 
gatherings are open, and we have So + Io + Ro = N/M 
and Sc = Ic = Rc = 0 such that all derivatives are equal 
to zero in closed gatherings for t < tc . Once the interven-
tion is implemented at time t = tc , we uniformly redis-
tribute non-compliant individuals, regardless of their 
epidemiological state, from closed to open gatherings.

Since XM gatherings are closed, we have 
XM × (YN/M) = XYN  non-compliant individuals to 
redistribute evenly across (1− X)M open gatherings. 
This mechanism adds XYN

(1−X)M individuals to a typical 
open gathering so that the population of each open 
gathering is increased to NM × [1+ XY /(1− X)] . Simi-
larly, the population of each gathering which now has 
become closed is decreased to NM (1− Y ).

After closures are implemented, the dynamics of the 
cloSIR model are still governed by the same set of ordi-
nary differential equations. As the outbreak progresses, 
the state of typical open/closed gatherings may be used 
to quantify two key observables for the population as a 
whole: first, the total number of infectious individuals

and, second, the total fraction of recovered individuals

Finally, note that the population size N and num-
ber of gatherings M only act as scale factors in our 
results. Therefore, in all subsequent analyses, we set to 
N = M = 1 for simplicity and without loss of generality.

Ultimately, although the dynamics are governed by 
the standard SIR differential equations for all time, the 

(1)
dSo

dt
= −�SoIo

dIo

dt
= �SoIo − Io

dRo

dt
= Io

(2)
dSc

dt
= 0

dIc

dt
= −Ic

dRc

dt
= Ic .

(3)I(t) =
MIo(t), for t < tc
(1− X)MIo(t)+ XMIc(t), for t ≥ tc

(4)R(t) =

{

MRo(t), for t < tc
(1− X)MRo(t)+ XMRc(t), for t ≥ tc.

cloSIR model offers an interesting trade-off between 
controlling transmission by closing venues and inten-
sifying transmission by aggregating contacts in a 
smaller number of still open venues. The question then 
becomes whether the redistribution of participants 
among gathering locations, e.g., churches or parks, will 
have a positive or negative impact on the epidemic. 
Assuming one cannot ensure the closure of all ven-
ues, is closing a certain percentage of venues worth the 
increase in visitors to those that remain open?

A cloSIR model on networks of interconnected populations
The cloSIR model is a general adaptive mechanism where 
populations adapt to an epidemic through top-down 
interventions and agents adapt to such interventions. It 
therefore combines different scales of population adapta-
tion [36], resulting in a balloon effect where adaptation to 
restrict gatherings squeezes the balloon and pushes the 
pressure in other unrestricted areas. This phenomenon 
is reminiscent of more mechanistic adaptive behaviors, 
such as coupling of epidemics and fear  [37] or network 
rewiring around infectious essential works  [38]. Indeed, 
two important assumptions of the cloSIR model as imple-
mented above is the homogeneous and fixed behavior of 
agents. Future modeling efforts should couple mobility 
changes to mechanistic adaptive models. In this section, 
we focus on a first attempt at extending the cloSIR model 
towards network metapopulation models with variable 
behaviors.

There is a long history of using metapopulation mod-
els to encode the spatial and coupled structure between 
populations in epidemiology  [39] and also specifically 
for COVID-19  [40–42]. This literature includes models 
accounting for how individuals might adapt their mobil-
ity in response to an epidemic  [43–45]. Importantly, this 
adaptive behavior change is always a bottom-up response 
to the epidemic itself (i.e., one individual choosing to avoid 
infectious contacts or move due to the local prevalence of 
a disease). The cloSIR mechanism introduced above is dif-
ferent as it considers a top-down intervention (i.e., closure 
of certain venues) and bottom-up adaptive response to the 
intervention rather than to the epidemic itself.

We are interested not only in what happens in a popu-
lation on average but also in how changes in mobility can 
change the coupling of interconnected populations. We 
can adapt the cloSIR model to gather insight on the role 
of coupling of communities as follows.

Let us assume a set of populations―called coun-
ties―where every individual county i has its own infec-
tious state {Si, Ii,Ri} . Counties are not independent and 
are coupled through a directed and weighted network 
of human mobility where ρi,j specifies the rate of visits 
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of individuals from county i to county j. The epidemic 
dynamics within a given county i is therefore specified 
by:

where the first term in Ṡi accounts for transmission 
within county i and where the sum over other coun-
ties account for coupling through mobility. Importantly, 
individuals from i do not permanently move to a differ-
ent county j, they are simply coupled to it through com-
muting or visit patterns but always return to in i. We also 
assume that both infectious and susceptible individuals 
continue moving at essentially the same rate given the 
high rate of asymptomatic individuals.

How is the cloSIR mechanism implemented? In the 
previous section, we focused on individual gatherings 
that could eventually close at time tc with probability X 
where X quantified the scale of restrictions. Here, coun-
ties themselves do not fully close, but the contact patterns 
are shifted by the closure of a fraction Xi of gatherings in 
county i. For time t > tc , we change the contact patterns 
from ρ to ρ′ as follows:

Our logic is that a fraction Xi of contacts within county 
i are stopped by closures, and therefore a fraction (1− Xi) 
of contacts remain after the intervention. Likewise, a 
fraction Xj of visits from i to j would target gatherings 
closed by the intervention in j such that only a fraction 
(1− Xj) remain. Importantly, we model the impact of 
non-compliance by redirecting a fraction of activities that 
would have occurred within county i but were stopped 
by the intervention. We therefore send a fraction XiYi/Ni 
individuals to county j, where Ni =

∑

j �=i ρi,j is the total 
coupling of county i with neighboring counties. These 
visits then create contacts if those gatherings are still 
open in county j, which occurs with probability (1− Xj).

Mobility patterns and information‑seeking activity
The mechanisms behind our modeling results have 
clear signatures as some individuals fail to reduce their 

(5)Ṡi = −�ρi,iSiIi − �Si
∑

j �=i

(ρi,j + ρj,i)Ij

(6)İi = �ρi,iSiIi + �Si
∑

j �=i

(ρi,j + ρj,i)Ij − Ii

(7)Ṙi = Ii

(8)ρ′
i,i = (1− X)ρi,i

(9)ρ′
i,j = (1− Xj)ρi,j + Xiρi,i

Yi

Ni
ρi,j(1− Xj) .

mobility, visit new places, or even travel further while 
the rest of the local populations reduce their activity. In 
practice, however, the unreliable and sensitive nature 
of available geolocation data [46] means that we should 
not track individuals but instead coarse-grain and nor-
malize mobility data as much as possible. These issues 
are detailed in our the “Discussion” section, and we 
now simply note that mobility data can not be used to 
validate our models or make any causal claims. Instead, 
we aim to find general trends coherent with the mecha-
nisms found in our models.

To assess the degree to which the mechanisms 
included in our mathematical models may have 
occurred during the COVID-19 pandemic, we use 
publicly available data from SafeGraph for a fixed time 
period in the first year of the pandemic. SafeGraph 
is a data company that aggregates anonymized loca-
tion data from numerous applications in order to pro-
vide insights about physical places [47, 48]. These data 
allow us quantify human mobility to specific establish-
ments after the adoption of NPIs, e.g., business clo-
sure, group-size limits. To enhance privacy, SafeGraph 
excludes census block group information if fewer than 
five devices visited a given location in a month (two 
devices in a week) from a given census block group. 
Using these data, we use counts of visits and unique 
visitors to businesses across the USA as well as the dis-
tance traveled from “home” (defined as the common 
nighttime location for the device over a 6 week period 
where nighttime is 6pm to 7am).

To complement the mobility data, we also use Google 
search trends (as downloaded from the Google API for 
Trends), where queries for “churches” increased begin-
ning in March 2020. We compare search volumes for 
church between March 13 and April 13, 2020, to Sun-
days in the previous 10 years of searches occurring on 
the same date across all US states. By normalizing to 
previous years, we are able to capture deviations during 
2020 above and beyond typical searching patterns over 
this period, which encompasses Lent where individu-
als may have increased interest in attending church. 
Comparison to previous years should alleviate poten-
tial biases as the previous years act as counterfactuals 
to 2020.

Finally, SARS-CoV-2 case data and county popu-
lations were downloaded from the COVID-19 Data 
Repository by the Center for Systems Science and Engi-
neering at Johns Hopkins University at the county level 
beginning in February, 2020 [49, 50], and for the entire 
time period for which we have mobility data. These are 
useful to investigate potential correlations between 
mobility patterns and case data. All data sources are 
further described in Additional file 1.
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Results
The cloSIR model
Strikingly, we find that in many scenarios the optimal 
strategy to minimize the size of the outbreak is often 
no intervention at all. Figure 1 shows that depending on 
the proportion of the population that chooses to go to 
another open gathering (Y) the final outbreak size is often 
minimized when X = 0 (no closures). In fact, below the 
epidemic threshold � < 1 , interventions can only worsen 
the final size of the outbreak since no closures leads to 
isolated communities each with a subcritical outbreak. 
However, when X > 0  open communities otherwise 
not at risk may become supercritical by increasing the 
concentration of susceptible individuals. For stronger 
epidemics ( � > 1 ), although a complete closure of gath-
erings X = 1 might be the optimal strategy, the expected 
outbreak size often follows a non-monotonous function 
of X such that the optimal outcome at X = 1 is next to 

a worst-case scenario at large values of X just below 1. 
What this implies is that the outcome is highly dependent 
on the amount of non-compliance that one can expect in 
a population (i.e., larger values of non-compliance Y).

Similarly, poorly-timed interventions can actually lead 
to additional waves of infection. Figure 1 shows that sec-
ondary peaks of infection occur if intervention is initi-
ated too late. Interestingly, stronger interventions tend 
to dramatically heighten the epidemic peak under many 
closure scenarios (colored curves) compared to the no-
closure baseline (black curve).

The cloSIR model therefore provides a simple, yet tell-
ing, illustration of the potential impact of the collective 
behavior observed in the empirical mobility and search 
data from the USA around essential services. Although 
future research should layer in additional complexity into 
models of policy interventions, within the idealized sce-
nario considered by the model, one can solve for specific 

Fig. 1 Final state of the SIR dynamics with variable disease infectiousness and intervention scale. Surfaces and contours show the final sizes 
of outbreaks across a range of intervention effects (X, proportion of closed gatherings) and proportion of non‑compliant individuals who travel 
to open gatherings (Y). Three levels of infectiousness are illustrated ( � = 0.5, 1.0, 1.5 ). We see that the worst‑case scenario is a function of � , X and Y, 
as there is no consistent ranking in outbreak sizes. Small interventions appear beneficial against very transmissible pathogens but risk lowering 
the epidemic threshold at high frequency of non‑compliant individuals, and larger interventions accentuate this effect. The bottom middle panel 
highlights this effect: we see that the impact of the fraction of non‑compliant individuals is non‑linear close to the epidemic threshold. At low 
values of Y, i.e., in a population with high compliance to recommendations, closing more gatherings is always beneficial. At the opposite end, 
for high values of Y, keeping all gatherings open is the optimal intervention. However, at medium values of Y, while closing all gatherings 
is still the optimal intervention, keeping all gatherings open is better than partial closures. The right‑hand panels show the effects of changing 
intervention time across ranges of Y. The black curve depicts the course of the outbreak without any intervention. The various colored curves 
peeling off from the black curve show the course of the outbreak given differently timed interventions. Colored dots indicate epidemic peaks 
larger than the no intervention baseline scenario. Intuitively, we find that earlier interventions are always better and that delayed and imperfect 
interventions can cause second epidemic waves
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features, e.g., the final outbreak size, the optimal closure 
percentage X, and the critical value of non-compliance Y 
such that weak interventions increase outbreak size.

Final state of the cloSIR model
The mathematical simplicity of the classic SIR model, 
on which the cloSIR model is based, allows for a formal 
analysis of the role of X and Y on the final outbreak size. 
In general, the final outbreak size for a given � , X and Y in 
our model is given by

We assume here that tc = 0 , and that So(0) ≈ 1 , 
Io(0) ≪ 1 , and Ro(0) = 0 . These assumptions serve as 
a natural motivating example while allowing for a less 
cumbersome mathematical analysis. In this case, Ro(tc) 
becomes 0 and so Eq.  10 simplifies to (1− X)Ro(∞) . 
Therefore, for convenience, we simply write R and S to 
denote the open compartments, since closed compart-
ments will always be empty.

After redistribution, the population sizes are no longer 
normalized to 1, and we let P = 1+ XY

1−X be defined as 
the size of a typical open compartment. Since the equa-
tions in (1) are then multiplied through by P for each 
compartment, the infectious dynamics of open com-
partments will be altered; in particular, the reproductive 
number R0 is increased to �P , leading to a greater force 
of infection within open compartments. We also let r, s 
be the proportion of recovered/susceptible individuals, 
so that after redistribution, we have s(t) = S(t)/P and 
r(t) = R(t)/P . The outbreak size as a proportion is then

This transcendental equation can then be solved for 
r(∞) with respect to a particular set of parameters 
though numerical means or using the Lambert W func-
tion. Following Appendix A of Ma & Earn (2006) [51] 
and elsewhere, s(∞) = − 1

R0
W (−R0e

−R0) , where W is the 
principal branch of the Lambert W-function. Therefore 
we may write (11) in closed-form, which in turn gives

Finding an optimal closing intervention
A notable aspect of the cloSIR model is that in many 
cases, the impact of X on the final outbreak size is such 
that intermediate values of X lead to a far worse out-
break, even if increasing X far enough towards 1 will be 
beneficial. In fact, we now show that the optimal value of 

(10)R(∞) = (1− X)Ro(∞)+ XRc(∞)

(11)
r(∞) = 1− s(∞)

= 1− s(0) exp(−R0(r(∞)− r(0))

= 1− exp(−R0r(∞))).

(12)R(∞) = (1− X + XY )

(

1+
W (−R0e

−R0)

R0

)

.

X minimizing Eq. (10) for a given Y and � is always 0 (no 
closures) or 1 (complete closure).

Assuming � ≥ 1 (when � < 1 , X = 0 is clearly as opti-
mal as anything else given that there is no epidemic), 
one can see from Fig. 1 that R(∞) as a function of X has 
either a single intermediate peak for higher values of Y, 
or is monotone decreasing for lower values of Y. This 
pervasive downward parabolic shape arises from the fact 
that R(∞) is the product of the linearly decreasing, posi-
tive function f (X) = 1− X + XY  , and the sigmoidal, 
positive function g(X) = 1+ (W (−R0e

−R0))/R0 , where 
dg
dX

 approaches 0 as X approaches 1. This guarantees that 
R(∞) is maximized at one of the extreme values X = 0 or 
X = 1.

While Eq. (12) is not defined at X = 1 , we can obtain 
a right-hand limit. Using that limX→1+ −R0e

−R0 = 0 and 
W (x) ≈ x for small values of x, we have as X → 1 that

This makes sense, since we would expect that r(∞) be 
equal to 1 when R0 → ∞ , so plugging this into Eq. (11) 
and simplifying gives R(∞) = Y  for X = 1.

This leads to the section’s main result, which is summa-
rized in Fig. 2:

While this is in closed form, W cannot be expressed 
with elementary functions and hence poses similar inter-
pretability issues to practitioners as implicit solutions or 
numerical approximations. Thankfully, a number of use-
ful approximations for W exist. For example, here we can 
use the crude estimate W (x) < x for −1/e ≤ x < 0 to 
obtain the bound Y > 1− e−� , which serves as sufficient 
criteria to be certain that no closure is the best option.

Using the cloSIR model on a network to explore the impact 
of mobility shifts
The general model of cloSIR on networks is more com-
plicated: we specify the epidemic dynamics with the 
normalized transmission rate � (equal to the ratio of 
transmission rate to recovery rate). The intervention and 
compliance of the population are specified independently 
for each county i through Xi , Yi and potentially through 
its timing tc,i . The size of populations Ni are implicitly 
specified by Si(0)+ Ii(0)+ Ri(0) . And finally, the contact 
patterns both within and across populations are specified 
by the coupling terms ρi,j.

R(∞) = (1+ e−R0)P(1− X)

= 1− X + XY + e−R0(1− X + XY )

→ Y .

(13)arg min
X

R(∞) =

{

0 if Y >

(

1+ W (−�e−�)
�

)

1 otherwise.
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The goal of this general model however is to explain 
how uneven changes in mobility patterns across mul-
tiple populations can contribute to spreading an epi-
demic even if the total contact rate goes down by 
shifting the direction of contacts to lower incidence 
communities. To do so, we focus on the simplest pos-
sible network of two communities, i ∈ 1, 2 , of equal size 
and density ρ1,1 = ρ2,2 = 1 , with an initially symmetric 
coupling ρ1,2 = ρ2,1 ≡ ρ but where community 1 has 
no intervention and community 2 has a variable inter-
vention specified by tc,2 = 1 , X2 ≡ X and Y2 ≡ Y  . With 
this set-up, the total frequency of contacts always goes 
down following an intervention with X > 0 , but as we 
will see the final outcome does not always improve.

In Fig.  3A, we first look at the outcome of this sce-
nario against epidemics close to their epidemic thresh-
old. We fix � = 0.95 and explore the impact of different 
interventions (X, Y) in community 2 for a series of dif-
ferent coupling strengths ρ . The key outcome of these 
results is that, in every considered case, we find a range 
of parameters such that community 2 can implement 

an intervention to improve its own situation while 
worsening the epidemic in community 1.

We then look at the impact of epidemic strength by 
changing the transmission rate � and keeping a fixed 
low value of coupling across communities ρ = 0.02 , 
shown in Fig.  3B. We find that at low coupling and 
against strong epidemics, it is extremely hard for an 
intervention in community 2 to not worsen the out-
break in the neighboring community with weaker inter-
vention (and in this case, no intervention at all).

Together, these results show that the risk of unin-
tended consequences from an intervention here barely 
depend on the scale of the intervention X (the frac-
tion of gatherings closed). This result is consistent with 
what we found in the previous section. For community 
2, the optimal intervention is to either close nothing 
( X = 0 ) or everything ( X = 1 ). Unfortunately, the latter 
can lead to unintended consequences and an increased 
incidence in community 1. We find that the risk of 
these unintended consequences is determined by three 
factors outside of the control of community 2: 

0.5
0.00

0.25

0.50

0.75

1.00

1.0 1.5

Complete closure
is optimal (X=1)

No closure
is optimal (X=0)

2.0 2.5 3.0

Fig. 2 Value of X giving the minimum value of Eq. (12), as a function of Y and � , based on numerical simulation of the cloSIR model. A clear 
transition from X = 0 (yellow) to X = 1 (blue) is seen, with no intermediary values. The solid black line corresponds to the theoretical closed‑form 
solution from Eq. (13), while the dashed grey line corresponds to the rough approximation Y > 1− e

−� past which it is best to not have any 
closures
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1. The compliance of the population Y; there exists a 
critical range of Y values for which an intervention in 
community 2 will cause unintended consequences in 
community 1.

2. The coupling ρ ; surprisingly, a weaker coupling 
between populations increases the risk of unintended 
consequences.

3. The transmission rate of the disease � , where strong 
epidemics mean that an intervention in community 2 
almost always leads to unintended consequences for 
community 1.

These results might represent what we would expect if 
one county sees a much higher incidence than surround-
ing populations and therefore implements closures with-
out coordinating with its neighbors. The higher incidence 
drives closures, which shifts mobility patterns towards 
counties with fewer closures; and this shift in turn can 
increase the total spread of the disease. This unintended 
consequence will be seen in community 1 if non-com-
pliance Y is larger than some threshold Y1 (determined 
by the coupling ρ and transmission rate � ) and will be 
seen in both communities if Y is larger than some other 

threshold Y2 > Y1 . These results therefore suggest, much 
like previous results on a single population, that large 
enough shifts in mobility patterns can precede increases 
in incidence.

Altogether, results from the cloSIR model on networks 
are in line with those from the simpler cloSIR on indi-
vidual gatherings. Just like partial closures can worsen 
an epidemic by concentrating individuals in a fraction 
of open gatherings, a strong intervention in one location 
can worsen an epidemic since shifts in the mobility pat-
terns can increase contacts across communities even if 
the total contact rate is decreased. Interventions there-
fore need to be uniform across gatherings of a certain 
type at a local level, and coordinated with neighboring 
populations at the global level.

Adaptive behavior during the COVID‑19 pandemic
Turning our attention to mobility data, we find that 
attendees were on average traveling further to attend 
certain gatherings, in particular church services, during 
early periods of NPI adoption in the USA. We find that 
despite seeing an overall 56% (95% CI: 40–76) decrease 
in visits to churches, comparing the first to the last week 

Fig. 3 A Fixing � = 0.95 , we show the change in final epidemic size per community (community 1 on the left and 2 on the right) for different 
interventions (axes) and coupling strength (rows). B Fixing ρ = 0.02 , we repeat the experiment now varying the epidemic transmission rate (rows). 
Color scale goes from best outcome (eradication of epidemic) in dark blue, to no change in grey, to worst possible outcome ( R(∞) = 1 ) in dark 
magenta. In both panels, we use a dashed area to highlight the regime of unintended consequences where a useful intervention in community 2 
worsen the epidemic in community 1
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of March, individuals that do visit a church travel on 
average 13% (95% CI: 4–26) further across most states 
in the country (Fig. 4). Many of these changes could be 
do to exogenous factors (such as the creation of food 
banks at many churches) or selection biases (e.g., people 
traveling further for church might be more committed 
and therefore less likely to stop going). These are com-
mon issues with these mobility data, which we will dis-
cuss later, but can be partially tested by looking at other 
data sets.

That individuals are looking and traveling further for 
churches is also seen in Google search trends, where 
queries for “churches” increased beginning in March 
2020. We show the full data in Fig.  5, with expected 
weekly spikes on Sundays and we therefore focus our 
qualitative comparisons on the Sunday values. Overall, 
we see 49.6% (95% CI: 46.4–52.9) higher search vol-
umes for churches in 2020 as compared to 2010–2019, 
with similarly higher volumes across states. Indeed, 
only Nevada and D.C. failed to show statistically sig-
nificantly higher search volumes in 2020, with the 
others ranging from 10% (95% CI: 7.0–11.8) in MA 
to 106% (95% CI: 100.5–111.3) in WY (Fig.  5). Some 
of these searches may be for individuals looking for 
online or virtual services which have also increased in 
recent years, see Additional file  1: Figs. S1 and S2 for 
a comparison of searches for “church online + church 
remote + church virtual” to searches for “church” with-
out the terms “online”, “virtual”, or “remote.” While we 
do indeed find a large increase for individuals search-
ing for online church services, we find even larger dif-
ferences in search volume between the two with online 
services being 21- up to 79-fold lower across states 
than churches without online. Additionally, we com-
pare a 14-day running coefficient of variation of church 
searches in 2020 to 2010–2019. We see an immediate 

spike in the coefficient of variation on the day the US 
president declared a national emergency, March 13th, 
which peaks in early May and remains elevated through 
August 2020. These patterns of searches are consist-
ent with our findings using the SafeGraph data, namely 
increased information-seeking for churches, poten-
tially because an individual’s normal church is closed 
and they are looking for an open venue. Together, the 
mobility and search data also support our findings that 
individuals were physically traveling further to attend 
church services.

Turning our attention to average church attendance, 
we find a positive association between distance traveled 
for church and decrease in average church attendance. 
More specifically, using a linear regression at the state-
level, we estimate that an increase of about 5 additional 
km traveled is related to a 25% decrease in visitors (95% 
CI, 15–34, p = 0.002 ). While these results do not provide 
additional insight into the mechanism, they are consist-
ent with individuals traveling further to seek an open 
church when their local church closes. In addition, we 
observe that early on in the epidemic (March and April 
2020), we see reductions in the mean number of visitors 
to churches in counties across the USA while concur-
rently seeing increases in the maximum number of visi-
tors to those churches. This implies that the density of 
individuals attending church services increased early on.

This phenomenon of increased travel during peri-
ods of venue closure is not limited to religious services. 
We compared differences in numbers of visits to gro-
cery stores that had increases in visits to churches who 
had increases in visits. We find a correlation between 
increases to visits to churches with increases in visits to 
grocery stores at the state level (Pearson’s r = 0.44 ) with 
increases to grocery stores being higher than to churches 
(slope = 0.9, 95% CI: 0.37–1.44; Fig.  6). Additionally, 

Fig. 4 Changes in distances traveled and number of visits to churches. A The percent change in average distance traveled to churches by state 
between the first and last week of March 2020. B The percent decreases in numbers of unique visitors to churches by state between the first 
and last week of March 2020. C The relationship between percent changes in distance traveled by percent change in number of visits 
between the first and last week of March 2020. A decreasing number of visits is weakly correlated with an increase in distance traveled
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Fig. 5 Changes in information‑seeking for churches. Sparklines show Google searches for “church + churches” (obtained using the Google Trends 
API for search) for all states in the USA. Dark line indicates searches in 2020 and lighter lines 2010–2019. Percent increases are comparing Sunday 
search volume in 2020 to Sunday volumes in 2010–2019. Map on bottom left shows the percent increases as displayed in the sparklines. Bottom 
right plot shows a 14‑day running coefficient of variation of searches for “church + churches.” 2020 saw significant increases in the coefficient 
of variation that have remained elevated since the US national emergency declaration (March 13th, dashed vertical line)



Page 11 of 16Althouse et al. BMC Global and Public Health            (2023) 1:28  

we find increases to churches and grocery stores to be 
largely independent of whether the state had a stay-at-
home order in place, suggesting that the phenomenon is 
closely related to the local distribution of services, indi-
vidual burden such as food insecurity and behavior of 
the local population. Comparing mean numbers of visi-
tors and distance traveled for all grocery stores revealed 
decreases in both―as would be expected from move-
ment restrictions in place―on the other hand, number of 
gym visits dropped drastically, but saw a sizeable increase 
in the distance traveled for those visits, which increased 
throughout the summer.

These mobility and search patterns suggest that indi-
viduals may indeed travel further during periods of venue 
closure and therefore may also increase the epidemio-
logical coupling between distinct communities. Given 
that the expected number of contacts is expected to 
increase non-linearly with the number n of participants 
in a gathering (i.e., potential contacts are proportional 
to n(n− 1)/2 ∼ n2 ), it is unclear whether or not closing 
some venues (e.g., churches, gyms) might be worth the 
increased risk in the remaining open venues.

Potential correlations with SARS‑CoV‑2 incidence
Finally, the natural question suggested by the mobility 
data and the cloSIR model is  Does differential mobility 
from non-uniform policy implementations lead to unin-
tended consequences in incidence? Figure  7 summarizes 
the results. We first distinguish between a focal county, 
which is the county receiving visitors from other, listed 
visiting counties, which are recorded in the SafeGraph 
data set. We can then calculate the proportion of visit-
ing counties which have more cases than the focal county 
being visited for churches, gyms, grocery stores, parks, 
and bars. Nearly uniformly we see that when the focal 
county has more cases than the visiting counties, COVID 
incidence goes up, and it goes down when the visiting 
counties have more cases. That being said, we cannot 
be more quantitative or definitive about this correlation 
given the limited number of waves over of COVID-19 
over the few months for which we have mobility data. 
Future studies of these results using separate, better 
understood, mobility data will be crucial.

We also find large heterogeneity in the magnitude 
of population movement and cases across states (see 

Fig. 6 Prevalence of churches and grocery stores with increased numbers of visitors and visitation patterns in 2019 and 2020. Scatter plot 
of different states based on their increase in visits to essential services as well as whether the state had a stay‑at‑home order in place before March 
29th [52]. These are specific grocery stores or churches who had an increase in visits comparing the first and last week of March. The horizontal 
axis shows the fraction of churches with an increase in number of visits, and the vertical axis shows the fraction of grocery stores with an increase 
in number of visits. There is a positive correlation between both but not clear distinction with local policy, suggesting that the phenomenon 
is related to the local distribution of services and behavior of the local population. Right hand panels show the mean numbers of visitors 
for grocery stores and gyms (top panels) and the mean distance traveled (bottom panels). While visits and distance traveled both decreased 
for grocery stores―as would be expected from movement restrictions in place―most states saw increases in visits in 20% to 40% of grocery stores 
with the remainder driving the decrease. Visits to gyms also dropped drastically, but must like churches, with an associated and sizeable increase 
in the distance traveled
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Additional file  2) as well as in the average number and 
population of unique counties visiting a focal county 
across states. For example, while all states saw a large 
decline in unique visiting counties, states such as Florida 
and South Carolina saw rapid rebounds to pre-closure 
levels (around 2 months) leading to an increase in inci-
dence, contrasted to Vermont which has kept unique vis-
iting counties low and subsequently had not seen a rise in 
cases over the studied period. Importantly, while we find 
that movement from dense cities to smaller communities 
might have been a driving factor in the early epidemic 
peak, the population size of visiting counties with higher 
incidence typically returned to a steady-state value fairly 
quickly (e.g., by mid-April 2020 in Maryland) such that 
second epidemic peaks are more likely driven by the 
direction of mobility from high incidence to lower inci-
dence counties rather than by population size alone. To 
further explore the results, the analysis of Fig. 7 is repro-
duced for all 50 states and D.C. are presented as addi-
tional figures (see Additional file 3).

Discussion
Through a mathematical model―termed cloSIR―we 
found that, under certain conditions, interventions 
meant to stem disease transmission can lead to increased 
case burden, either locally or in neighboring populations, 
relative to scenarios with no intervention at all. Then, 
using real-time mobility and search data in the USA, we 
found that while overall visits to various types of venues 
decreased in response to state-level COVID-19 poli-
cies implemented during the first 2020 wave, the average 
distance individuals traveled to visit certain locations 
increased significantly. This observed increase in travel 
was corroborated by Google search queries in March, 
2020, indicating an increase in information seeking for 
venues like churches. Our findings are in line with other 
research showing heterogeneity in mobility and inter-
net search responses across different institutions and 
locations throughout the pandemic [33, 53–55] and an 
increase in activities associated with outdoor recreation 
[23, 56, 57]. Finally, using county-level COVID case data, 
we found that local SARS-CoV-2 incidence influenced 
individual movement and vice versa. These dynamics 
were further modified by the average number of unique 
visiting counties where states that saw a rapid return to 
normal unique visiting counties saw large increases in 
incidence (such as in South Carolina and Florida) and 
states that maintained a limited number of unique visit-
ing counties saw no increases in cases (Vermont). Taken 
together, these results indicate the sensitivity and com-
plexity of epidemic dynamics to the distribution across 
space and time of closure policies.

Balancing the mental, economic, and social health of 
populations with the serious risks of COVID-19 means 
that the decision to implement movement restrictions 
(e.g., cordons sanitaires) should be carefully considered. 
This is the same for other NPIs (e.g., hand washing, facial 
covering, social distancing, etc.)  [58]. Indeed, evidence 
from China suggests that while the cordon sanitaire 
of Wuhan delayed the outbreak, it was local measures 
that slowed transmission and ultimately controlled it  [7, 
59, 60]. Additionally, studies have shown that outdoor 
transmission risk of SARS-CoV-2 remains quite low [24] 
and variability in movement to “blue and green” spaces 
was not associated with increased risk of COVID-19 
cases [23]. Despite evidence of the efficacy of consistent 
NPIs, many countries (especially the USA) continue to 
implement control measures in a scattered, patchwork 
manner [10, 13].

While distance traveled and the number of visits to 
essential services did not correlate strongly with any 
demographic variables (e.g., population density, average 
age), both of these responses did correlate with com-
munity tightness, with tight communities being those 
“with strong norms and little tolerance for deviance” 
(Fig. S1). Gelfand et al. (2020) found that countries with 
both efficient governments and those with tight cultures 
were the most effective in limiting COVID-19 cases 
and deaths  [61]. However, White and Hébert-Dufresne 
(2020) found the opposite for the USA, with tighter 
states having faster COVID-19 growth rates early in the 
pandemic [11]. In the context of our cloSIR model, if a 
government expects compliance issues and complete 
lockdown is not possible, it could be best to have no 
lockdown at all (Figs. 1 and 2) or at the very least coor-
dination with neighboring populations (Fig.  3). This is 
an extreme example and we do not advocate foregoing 
NPIs but instead an acknowledgment that one commu-
nity’s ability to control a pandemic like COVID-19 is 
dependent both on its own policies and the policies of 
neighboring communities. This also stresses how local 
interventions aimed at reducing transmission/disease 
severity, e.g., mask wearing, testing, vaccination, etc., 
may be even more important in scenarios where the het-
erogeneity in or failure of regional/global policies leads 
to increased case numbers. Finally, additional work 
should focus on assessing practical values of the rate 
of non-compliance. Periodic surveys of Facebook users 
reveal a wide range of mask use and percentage of those 
experiencing COVID-like symptoms across counties 
in the USA (see Supplementary Information). In addi-
tion, future work could examine how these effects vary 
at different spatial scales of human mobility and NPI 
implementation.
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There are several important caveats to our study. 
First, we developed a simple model that was able to 
illustrate the potential unintended consequences of 
individuals adapting their behavior to seek essential 
services under inconsistent physical distancing policies. 
While the simplicity of this model is a strength when 

trying to isolate the effects of inconsistent control poli-
cies on COVID-19 transmission, future work will be 
needed before such models could be used to actively 
inform specific policy decisions. Additionally, models 
with heterogeneous closure policies can result in both 
reduced case numbers and increased social activity if 

Fig. 7 Population movement is influenced by COVID incidence and is highly heterogeneous across states. The large left‑hand column shows 
summaries of cases, movement, and county opening and closing in New Jersey and serves as a guide to interpreting the other panels. New 
Jersey saw a surge in incidence in early April (cases per 100,000, 7‑day running mean, grey shade, top panel). We distinguish between the focal 
county, which is the county receiving visitors from listed visiting counties, which are recorded in the SafeGraph data set. We can then calculate 
the proportion of visiting counties which have more cases than the focal county being visited for churches, gyms, grocery stores, parks, and bars 
(colored lines in the top left panel). The frequency of trips from higher‑incidence to lower‑incidence counties appear to lead daily incidence. 
Finally, we look at the magnitude of population flux in response to incidence in the bottom panel. Grey lines are the 95th, 75th, 50th, 25th, and 5th 
quantiles of the difference in the numbers of cases between the focal county and the visiting county. There is substantial variation in the numbers 
of population movement across states. The green line indicates the average number of unique visiting counties per focal county for that state. 
While most states saw a rebound in the number of unique visiting counties, Vermont maintained a low number of influx of population
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interventions are targeted at reducing super-spread-
ing [62, 63]. Second, because the SafeGraph data do not 
track individual users over long periods of time, those 
observed in late March are not necessarily the same 
individuals observed earlier in the month. Moreover, we 
may expect biases in the diversity and behaviors of indi-
viduals tracked by the system since different types of 
gatherings attract different individuals. Third, the sam-
ple-based nature of the SafeGraph data as well as our 
method for selecting churches, bars, groceries, gyms, 
and parks mean we fail to capture all of these venues 
in the USA. However, we do not expect geographical 
biases with these two limitations and that our lists are 
representative of the USA. These limitations mean that 
small geographic regions should not be directly com-
pared to one another, or even to themselves at a differ-
ent time, and different locations should not be directly 
compared. This is why we coarse-grained our results 
over states, why we mostly compared relative changes 
and not absolute differences, and why we attempted to 
correlate our findings with a secondary data source like 
online searches. Future work is therefore warranted, on 
both data collection and analysis (comparing changing 
movement patterns for various other business types) 
and mathematical modeling.

Conclusions
Our results suggest second-order interactions 
between disease transmission and population move-
ment: High local incidence could drive local closures 
which decrease global connectivity but, as in our clo-
SIR model, could increase coupling across gatherings 
and populations. Both our models and data stress that 
interventions need to be uniform across gatherings 
of a certain type at a local level, and coordinated with 
neighboring populations at the global level. We also 
note that while we cannot assess causality, the associa-
tion between movement and cases provides a starting 
point for future research.

Altogether, it appears of key importance that NPIs―
specifically related to business and venue closure―be 
implemented in a coordinated way across space in time. 
Similarly, relaxation of such interventions must be done 
methodically and over time, with a strong emphasis on 
equity across incomes and geographies to avoid endan-
gering individuals with lower socioeconomic status  [55, 
64]. Our findings also have indirect implications for the 
roll-out of vaccination booster programs. Vaccination 
acceptance already varies across the USA as it did with 
past vaccination efforts [65–68]. This allows for the pos-
sibility of unvaccinated individuals being clustered geo-
graphically and where concentration of contacts among 

unvaccinated individuals can cause or worsen outbreaks. 
Human behavior is a strong driver of the transmission 
dynamics of SARS-CoV-2 and care must be taken to 
reduce the heavy burden imposed by COVID-19 and 
avoid unintended, negative consequences from inconsist-
ent policies around implementing and relaxing mobility 
restrictions and/or venue closure policies [36].
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