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A B S T R A C T   

A core issue in temporal ecology is the concept of trajectory—that is, when can ecologists have reasonable 
assurance that they know where a system is going? In this paper, we describe a non-random resampling method to 
directly address the temporal aspects of scaling ecological observations by leveraging existing data. Findings 
from long-term research sites have been hugely influential in ecology because of their unprecedented longitu-
dinal perspective, yet short-term studies more consistent with typical grant cycles and graduate programs are still 
the norm. We use long-term insights to create ‘broken windows,’ that is, reanalyze long-term studies from short- 
term observational perspectives to examine discontinuities in trends at differing temporal scales. 

The broken window algorithm connects our observations between the short-term and the long-term with an 
automated, systematic resampling approach: in short, we repeatedly ‘sample’ moving windows of data from 
existing long-term time series, and analyze these sampled data as if they represented the entire dataset. We then 
compile typical statistics used to describe the relationship in the sampled data, through repeated samplings, and 
then use these derived data to gain insights to the questions: 1) how often are the trends observed in short-term data 
misleading, and 2) can characteristics of these trends be used to predict our likelihood of being misled? We develop a 
systematic resampling approach, the ‘broken_window algorithm, and illustrate its utility with a case study of 
firefly observations produced at the Kellogg Biological Station Long-Term Ecological Research Site (KBS LTER). 
Through a variety of visualizations, summary statistics, and downstream analyses, we provide a standardized 
approach to evaluating the trajectory of a system, the amount of observation required to find a meaningful 
trajectory in similar systems, and a means of evaluating our confidence in our conclusions.   

1. Introduction 

A fundamental problem in ecology is understanding how to scale 
discoveries: from patterns observed in the lab or the plot to the field or 
the region, or bridging between short-term observations to long term 
trends and trajectories (Chave, 2013; Levin, 1992; Schneider, 2001). 
While shorter-term studies (i.e. those where data collection occurs for 
less than ~5 years) that coincide with length of typical grant cycles and 
graduate programs are still the norm, these human constraints do not 
necessarily capture the ecological phenomena they seek to measure, 

particularly their temporal dependencies (Hastings, 2004; Wood et al., 
2020). This unfortunate mismatch of scales has the potential to limit our 
understanding of ecological trajectories- that is, the direction a system is 
going through time, and can undermine our efforts towards a predictive 
ecology (Evans et al., 2012). Understanding where and how short term 
patterns fit into broader trajectories, and how to interpret short-term 
patterns in the context of a system’s trajectory remains an open ques-
tion (Wauchope et al., 2019; White, 2019). This is illustrated by the 
recent insect decline controversy, where several high profile papers have 
observed precipitous declines in insect populations have been 
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subsequently shown to use inappropriate methods for synthesizing the 
data (Daskalova et al., 2021; Grames et al., 2019; Wagner, 2020). For 
example, it is inappropriate to simply combine multiple short term 
studies and extrapolate (e.g.: Sánchez-Bayo and Wyckhuys, 2019), 
particularly without explicitly considering the underlying temporal de-
pendencies in the data (Didham et al., 2020). 

However, simply recommending that scientists collect more data, for 
longer, is not necessarily practicable. While long term studies are hugely 
influential in ecology, they require long-term access to research re-
sources and infrastructure and thus their unprecedented longitudinal 
perspective is not typical (Hughes et al., 2017). Furthermore, short-term 
studies, given their prevalence and more limited temporal commit-
ments, can provide a more spatially distributed and potentially richer 
and more nuanced view into a specific phenomenon at a point in (or 
shorter period of) time. The key to meaningful synthesis of this vast 
resource of short-term studies is linking the two extremes of scale. Thus, 
long-term data, particularly those produced in networked, uniform ap-
proaches like those offered by the United States Long Term Ecological 
Research Network (LTER), present a fundamental opportunity to bridge 
short and long-term trends through data mining. With long term data, 
ecologists can systematically investigate the presence and prevalence of 
short-term trends and compare them to the long-term system trajectories 
these data document. 

Ecological systems are inherently dynamic, and variations in the 
metrics humans collect about these systems can be driven by a variety of 
stochastic and deterministic processes, as well as by sampling error or 
other research-induced effects (Suding and Gross, 2006). Short-term 
dynamics observed in an ecological system are not always indicative 
of the long-term trajectory of that system (Carey and Cottingham, 2016), 
and furthermore, shorter observation periods can lead to spurious ob-
servations because of sampling error variance (Daskalova et al., 2021). 
In population processes, for example, density-dependent deterministic 
mechanisms, combined with environmental perturbations, can produce 
highly variable population numbers over various time scales (Turchin, 
2003). Decoupling these processes can reveal the skeleton of a deter-
ministic process interacting with external forces (Bahlai and Zipkin, 
2020). However, to disentangle these drivers from an empirical stand-
point generally requires a substantial amount of data to be collected over 
time (Cusser et al., 2020; Higgins et al., 1997). Indeed, in a recent study, 
White (2019) found that 72% of vertebrate population monitoring 
programs required at least a decade of observation before the overall 
trajectory of the population could be detected statistically. A recent 
study of trends in water bird populations found that short term trends 
were generally reflective of longer-term patterns (Wauchope et al., 
2019), but varied by the generation length of the organism under study. 
However, they found that, similar to the White (2019) study, greater 
than two decades of observations would be required to reliably detect a 
change of 1% per year. Conversely, a study of population viability 
modelling in snails determined that although longer time series were 
generally better for establishing the population’s trajectory, diminishing 
returns in precision were observed after about 10–15 years of data were 
collected (Rueda-Cediel et al., 2015). It is unclear how these findings can 
be generalized across organisms with differing lifespans, reproductive 
strategies and life histories, or other environmental processes. 

The question of trajectory over time is central in ecology, particularly 
as related to how ecological systems on which humans depend are 
responding to disturbance or will behave under future climate or envi-
ronmental conditions (Sutherland et al., 2013). Trajectory is essential to 
our understanding of ecosystems, their management, and policy de-
cisions, as we interact with our environment. Analytic approaches to 
time series data have long been a focal area of research in ecology, 
allowing practitioners to examine temporal dependencies in a variety of 
processes. The shape a time series takes can provide meaningful infor-
mation about the properties of the system, the rules that govern its 
variability, and the trajectory that the system is taking (Esling and Agon, 
2012). But when insufficient data exists to apply (or even select) an 

appropriate time-series approach, a scientist may resort to simpler sta-
tistical tools, such as linear models, to describe the patterns observed in 
the data through the study’s window of observation. It is not uncommon 
for a shorter-duration multi-year ecological study to extrapolate from its 
data, using the trends observed within their sampling window to draw 
conclusions about a system’s apparent trajectory. For example, a study 
of British ladybeetle communities concluded that native ladybeetle 
species were in decline, as was total ladybeetle abundance, following the 
introduction of an invasive species (Brown et al., 2011). Another found 
that the richness and abundance of seeds in a soil seed bank were in a 
recovery trajectory following a period of industrial pollution (Wagner 
et al., 2006). An adventive pest species was implicated in reducing 
carbon to nitrogen ratios, organic matter in soils of infested forests, thus 
substantially changing the ecosystem’s function over time (Orwig et al., 
2008). These examples, representing very different ecological domains, 
have a common element of a three-year study duration. Yet these in-
ferences may be out of temporal sync with the processes they aim to 
understand (Birkhead, 2014). 

A vexing problem arises when shorter term studies apply statistical 
tools at time scales that are not matched with the underlying processes 
to make inferences about trajectory: not only may spurious trends be 
observed, but because only a portion of the underlying process vari-
ability is captured, a higher degree of statistical confidence in the result 
will be found. For example, Bahlai and students examined a 12-year time 
series of firefly captures from Michigan (Hermann et al., 2016). Con-
cerns had been raised about the status of fireflies in eastern North 
America (Chow et al., 2014), however, for that population, the authors 
found no evidence of decline over the 12 years (Fig. 1): there was no 
linear relationship between average captures and year (p = 0.71, R2 =

0.002), and, indeed, there appeared to be evidence of a cyclical dynamic 
common to many populations near their carrying capacity (Fig. 1A). 
However, students remarked that if the study had been limited to, for 
example, the 4 years from 2005 to 2008 (Fig. 1B), dramatically different 
conclusions would have been made. A linear regression of these data 
would very likely have been interpreted as ‘strong evidence’ that a 
decline was occurring in this population (slope − 0.31 ± 0.05, p =
0.000003, R2 = 0.633). Simply, with less data, we would have made the 
wrong conclusions, and we would have been very confident in our 
wrong answer. This connection between shorter observation periods and 
more pronounced patterns is supported by observations made in syn-
thesis efforts: in a compilation of insect biodiversity studies, the shortest 
time series were more likely to show the most extreme trends (Daskalova 
et al., 2021). 

It is because of this phenomenon of “highly-confident wrong an-
swers” that long-term studies are so valued in the ecological community. 
Indeed, because biological systems are often defined by their variability, 
when studies are shown to be irreproducible, it is not necessarily due to 
poor research practice, but due to their inability to capture the full 
variability of the system within the limits of the study design (Jarvis and 
Williams, 2016; Voelkl and Würbel, 2016). Long-term ecological 
research provides insight into the inherent variability of natural systems 
(Lovett et al., 2007), and insights are thus often only apparent after 
many years of study (Knapp et al., 2012). Beyond this, there are many 
other inherent benefits to long-term studies. Long-term studies are 
disproportionately represented in policy reports and in the ecological 
literature: studies involving long term observations are cited more often 
than studies of shorter duration (Hughes et al., 2017). Furthermore, 
long-term observational studies provide important baseline data: as the 
world itself changes, these data provide insight into how ecosystems 
function, instead of studying phenomena after they happen (Franklin 
et al., 1990; Hastings, 2004; Magurran et al., 2010). 

Although the importance of long-term studies is clear, empirical 
examinations of the converse are rare: just how frequently are scientists 
misled by short-term studies? Can knowledge generated by studying the 
relationship between short- and long-term studies to bridge the in-
terpretations of short-term data to long-term processes? In this study, we 
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describe a synthetic, computational approach to create a framework to 
address two hypotheses: 

1.1. Shorter observation periods will increase the likelihood of observing 
misleading trends 

Because exogenous forces are of greater influence at smaller spatial 
and temporal scales, we predict that short time periods will be more 
variable due to these processes, and conversely do not capture the full 
extent of natural variability (Lovett et al., 2007; Suding and Gross, 
2006), so they are more likely to result in “highly-confident wrong 
answers.” 

1.2. Statistical metrics often used as a proxy for ‘confidence’ in short-term 
trends (such as the p-value) will not be associated with an increased 
likelihood of capturing a time period consistent with long-term trends 

Following from the previous prediction, we predict that p-values will 
be inferior predictors of the ‘correctness’ of short-term trends in pre-
dicting longer term trajectory compared to other properties of the sys-
tem. Better predictors may include statistical measures (slope, standard 
error), but trends are likely moderated by system specific predictors (e.g. 
site, data type). 

The Broken Window Algorithm is a suite of tools which will allow 
ecologists to leverage existing data to make inferences about system 
behavior and data needs to characterize system trajectories using an 
automated, non-random resampling approach (White and Bahlai, 2020): 
in short, our algorithm repeatedly ‘samples’ sequential moving windows 
of data from existing long-term time series, and analyzes these sampled 
data as if they represented the entire dataset. That is, we use knowingly 
limited ‘windows’ of observation to determine how temporal de-
pendencies in a time series affect the likelihood of a short time making a 
spurious conclusion about how a process varies in time. The tool then 
compiles typical statistics used to describe the relationships in the 
sampled data, through repeated samplings, and then use these derived 
data to gain insights to the questions, how often are the trends observed in 
short-term data of this typemisleading, and can the characteristics of these 
trends be used to predict our likelihood of being misled? Findings from this 
work will support the development of a deep understanding of temporal 
scaling in ecology, aiding in the interpretation of countless future short- 
term studies. Secondly, and more broadly, our findings have applica-
bility across a variety of domains. Results from this approach will have 

the opportunity to guide science funding policy, experimental design 
and interpretation, and data archiving. 

2. Materials and methods 

2.1. Developing the ‘broken_window’ analysis algorithm 

The broken_window algorithm breaks a time series dataset into all 
possible sequential subsets and then fits a linear model to each of these 
subsets and compiles the resulting summary statistics, allowing a user to 
identify and quantify spurious trends within their data. The algorithm is 
implemented as a series of functions written in R. The algorithm requires 
a user-inputted two variable data frame with a regular measurement 
interval as the first variable, and a response variable as the second 
variable. For the purpose of this study, we assume a yearly measurement 
interval and some integrative response metric (captures of organisms 
per trap, average reading, total yield). Data are first subjected to a 
standardization function which converts the response metric to a unit-
less Z-score to normalize the data and make it possible to compare 
datasets with responses of very different magnitudes, and to minimize 
the impact of measurement unit choice on the observed trends. 

A function that fits a linear model to the data and computes an output 
vector with the number of observations, the number of years in the 
study, and particular summary statistics of interest, namely, the slope of 
the relationship between the response variable and time, the standard 
error of this relationship, p-values for each of these statistics, and then 
R2 and adjusted R2. Although R2 and p are not measures of statistical 
confidence per se, they are often used by ecologists in this way (Naka-
gawa and Cuthill, 2007; Yoccoz, 1991), and thus can be used as a means 
to approximate ‘conclusions’ that a researcher might make of the data. 
We use this fitting function within a moving window function that takes 
a provided data frame and iterates through it at all possible subsets and 
intervals, feeding each interval to the fitting function described above, 
and compiling the fit statistics for each into a single object. 

3. Calculation 

The moving window function is defined as follows. Let D represent 
the complete dataset, with Dt,r representing a single observations of time 
t and response r. Let Y = (y1, y2, …, yn) represent the set of unique 
values of t for which observations are recorded, where n is the total 
number of unique values of t. D is partitioned into sequential subsets of 
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Fig. 1. Same data, different observation periods, different conclusions. Firefly populations (reported as mean number of adults captured per trap) monitored in ten 
plant community treatments at Kellogg Biological Station in southwestern Michigan cycle over an approximately 6 year period (panel A). Yet, if sampling had only 
occurred over a 4 year period, we would conclude the population underwent a steep (and statistically significant) decline in the four years from 2005 to 2008 (slope 
− 0.31 ± 0.05, p = 0.000003, R2 = 0.633; panel B). Data and figures adapted from Hermann et al. (2016). 
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size S = (3, 4, …, n) to create windows wY,S such that each window. 
wi,j ⊂ D = {Dt,r | Yi ≤ t ≤ Yi+Sj, ∀ Yi+Sj ≤ yn}, and wy1,n = D. 
For each wi,j, we apply the fitting function described above, and 

compile the resultant fit statistics for downstream analyses into a data 
frame. Then, we calculate several meta-statistics and produce visuali-
zations of trends from the resultant data frame. 

First, we defined the slope of the longest time series (i.e. the slope of 
the linear regression of the whole dataset, D) as the proxy for the ‘true’ 
trajectory of the data (as it represents the best information available), 
along with the computed slope’s standard deviation and standard error 
of the mean as measures of the ‘true’ variability of the set. Meta-statistics 
are computed based on comparison to these ‘true’ statistics. 

For all meta-statistics based on frequentist assumptions, we used a 
set of frequently used ‘significance’ levels as defaults (i.e. an α = 0.05 for 
line fit statistics) but also encoded the functions so that a user could 
change these default values easily through supplying a function with 
different arguments. For each relevant function, we allowed users to 
toggle via a function argument between these meta-statistics based on 
the full set of windows tested, or only on the set of windows with sta-
tistically significant results, as defined above. 

We defined “stability time” as the number of time steps needed 
before a given proportion of slopes (default = 95%) observed in a 
window of that length are within a certain number of standard de-
viations (default = 1) of the true slope. These values were selected to 
mitigate the impact of outlying data and to reflect industry standards. 
We computed absolute range (minimum and maximum values) of slope 
across all windows, as well as relative range (minimum and maximum 
difference from the ‘true’ slope, computed as the slope(wi,j) minus slope 
(D)). We also created functions that computed the proportion of win-
dows examining a dataset would produce particular results. The pro-
portion of statistically significant slopes produced by a given D measure 
the probability that a randomly selected window of time would produce 
a ‘statistically significant’ result. We defined the ‘proportion wrong’ as 
the proportion of windows producing statistics that would lead to con-
clusions differing from those observed for the ‘true’ trend (i.e. if the true 
trend was a positive slope, all windows suggesting a negative or non- 
significant zero-magnitude slope were considered spurious, and so 
on). We provide functions to compute the proportion wrong for all 
windows in combination, for each window length, and in the set of 

windows with lengths less than stability time. In combination, these 
functions provide a standardized approach to asking the questions of 
how long a system must be observed to make consistent conclusions 
about its trajectory, and the likelihood of coming to misleading con-
clusions about a system if it is observed for less than that time period. 

We created several visualization functions to enable a user to, for a 
given dataset D, quickly interpret trends based on these meta-statistics, 
and compare trends in outputs across multiple datasets. A pyramid plot 
(Fig. 2A) uses the data frame of summary statistics from the fits of all 
windows. It plots the computed slope for each window on the x axis and 
the length of the window on the y-axis, resulting in a triangular or funnel 
shaped cloud of points. By default, point size is scaled by the R2 of the 
response-by-time relationship within a given window and statistically 
significant points are demarcated by a circle, and non-significant points 
given by an ‘X’. All points are given with lines indicating their respective 
standard error. A vertical dashed line indicates the slope of the longest 
time series, and two dotted vertical lines are plotted at one standard 
deviation from this value, allowing a user to visually identify the sta-
bility time, that is, the length of time required for the majority of win-
dows to produce slopes within a certain interval of the true slope. 

The “wrongness” plot (Fig. 2B) examines the same data from a 
summarized perspective- it plots the average R2 value and proportion 
wrong on the y axis by number of years in a window on the x-axis, 
allowing a user to visualize the relationship between misleading results 
and the ‘confidence’ in them for a given D. Finally, the “broken stick” 
plot (Fig. 3) allows a user to visualize the raw time series from D 
simultaneously with some of the results of the broken_window algo-
rithm. The z-scaled response metric (y-axis) is plotted by observation 
time (x-axis). The true slope of the entire dataset D is plotted as a solid 
black line. Then, best fit lines for each window of a user-specified length 
(default = 3-time steps) are plotted, allowing a user to visualize the 
variation in trend at different points in the time series. Statistically 
significant slopes are given by dashed red lines, non-significant slopes 
are indicated by dotted lines. Finally, we created a function which layers 
and animates broken stick plots to visualize how window slopes change 
given increasing window length. 

The R script was developed in RStudio Version 1.2.5033 “Orange 
Blossom” running R 3.6.2 “Dark and Stormy Night.” The script, its 
development history and all code for case studies and figure generation, 
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Fig. 2. Core outputs of the broken_window algorithm: Using the firefly data from the early sucessional plant community presented in Hermann et al. (2016), we are 
able to compile 55 possible windows of three years or greater. A) The pyramid plot gives a distribution of possible conclusions. On this plot, each point represents a 
window and its corresponding summary statistics for a linear relationship between the response variable (in this case, z-scaled population density of fireflies) and 
time. Point coordinates are defined by the slope and length of a window, and point size is scaled by the R2 computed for that regression. The lines accpmanying each 
point represent standard error of the slope for each point. Statistically significant relationships (in this case α = 0.05) are plotted as black circles, and non-significant 
slopes are plotted as red Xs. The vertical central dashed black line represents the slope of the complete time series (here with 12 years of data) and the vertical dotted 
grey lines are placed at one standard deviation in both the positive and negative direction from the ‘true’ slope. B) The ‘wrongness plot’ visualizes the relationship 
between the likelihood of a spurious conclusion and statistical proxies for ‘confidence’ in a relationship. The proportion of windows where spurious slopes were 
observed by the length of window are displayed as black circular points with blue solid smoothing line, and the average R2 value across windows of that length are 
given as orange triangular points with a dashed red smoothing line. The grey dotted vertical line is placed at the ‘stability time’ of 7 years, after which the slopes in 
95% of the windows occur within one standard deviation of the ‘true’ slope. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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are available on GitHub at https://github.com/cbahlai/broken_window. 

4. Results 

We demonstrated the utility of the broken_window algorithm using 
the firefly study which inspired its development (Hermann et al., 2016). 
These data on firefly (beetles in the family Lampyridae, with those 
captured primarily thought to belong to Photinus pyralis) captures on 
insect sticky traps were collected 2004–2015 across 10 plant commu-
nities in southwestern Michigan. Complete sampling design and treat-
ments descriptions are provided in Hermann et al. (2016). For the 
purpose of this demonstration, we used the data collected at the 
perennial early secessional community plots, where fireflies were rela-
tively abundant and complete data were available. Data were subjected 
to cleaning and quality control using scripts developed by Hermann 
et al. (2016), and then compiled into a metric of total captures per trap, 
by year (N = 12) and replicate (N = 6), for a total of 72 observations. 

The broken_window algorithm produced 55 unique windows (1 
sequence of 12 years of data, 2 sequences of 11 years of data, …, 10 
sequences of 3 years of data). The full 12 year, 72 observation dataset of 
the normalized response over time was found to have a non-significant 

slope (− 0.01 ± 0.03, p = 0.70) and low R2 value (0.002) suggesting 
there is unlikely to be a linear trend with time in these data (or, more 
specifically, we fail to reject the null hypothesis that there is no linear 
relationship between our response and time) (Fig. 2A). Values computed 
for the slopes across the various windows ranged ±1.2 units around the 
true slope. The algorithm found a stability time of 7 years, that is, once 
seven years of data were collected, slopes on >95% of windows tested 
from anytime in the study were within one standard deviation of the 
slope of the longest series. Overall, nearly half (27/55) of the windows 
tested found a statistically significant slope, and thus there was nearly a 
50% chance a shorter sample leading to a misleading conclusion. 
Although misleading slopes combined with significant p-values occurred 
for window lengths longer than 7 years (Fig. 2B), they were much more 
common with window lengths shorter than the stability time (68% of 
windows), yet these shorter windows were also more likely to be 
accompanied by a R2 > 0.1 (Fig. 2B). Although 3 of these 21 windows 
≥7 years in length contained statistically significant trends, after sta-
bility time, relative slope ranged from − 0.14 to 0.17 z-scaled units 
around the true slope (Fig. 3). 
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from the early successional plant community from Hermann et al. (2016), all of the nine panels presents the Z-scaled response of firefly density over time, and a solid 
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5. Discussion 

Patterns observed in local scale, short-term ecology tend to be 
dominated by stochastic forces, making generalizations, extrapolations 
and predictions difficult at larger scales, yet are essential to capture fine- 
scale understanding of system dynamics (Chave, 2013; Willis and Birks, 
2006). The broken_window algorithm formalizes a framework for 
determining how long a system must be observed before conclusions 
about its general trends can be reached, and the prevalence of 
misleading results that occur prior to that time period. With our firefly 
case study, we found that trends observed prior to our ‘stability time’ of 
seven years had essentially even odds of being misleading: of three 
possible outcomes for each window (slope more negative than overall 
trend, slope more positive than overall trend, slope the same as overall 
trend), 2/3 of outcomes fell into the two former, and erroneous cate-
gories. In this case, no net linear trend was observed in the firefly pop-
ulation data (Fig. 1, 2A). Interestingly, we observed that in our case 
study, statistics commonly used as indicators of “strength” of relation-
ship suggested more uncertainty, and less ‘confidence’ in results from 
windows of longer length: p-values, on average, went up, and R2 values 
decreased on average as longer windows of the time series were exam-
ined (Fig. 2C). This finding shines an important light on the reliability of 
these statistical tools as indicators of model performance: although they 
provide measures of how well the data from a given window fit the 
selected model at that time, they also inflate our confidence in what is 
often an inappropriate model fit to a spurious or short-term trend 
(Nakagawa and Cuthill, 2007). Given the high likelihood that these 
observations will vary by context, future work must consider how pro-
cess characteristics, data availability, and cultural precedent (i.e.: the 
history of use of a given approach in a scientific field) affect the selection 
and interpretation of these models. Furthermore, it should explicitly 
examine data with different structures to examine the relationship be-
tween time series shape and likelihood of erroneous conclusions at 
differing study lengths. 

In this paper, we demonstrate the utility of the broken_window al-
gorithm in the context of a simple, single population case study. How-
ever, this analytical approach has broad application which has been 
applied by several colleagues in additional systems. In a recent study, 
Cusser et al. (2020) applied the algorithm to a thirty-year experiment 
comparing the sustainability and productivity attributes of an agricul-
tural cropping system under several management regimes. In this sys-
tem, due to high variability between treatments, 15 year observation 
periods were needed to detect consistent between-treatment differences 
in yield and soil water availability, and at least 1/5 of all windows 
examined resulted in spurious, statistically misleading trends (i.e. sug-
gest the opposite relationship between management treatments). In an 
expansion of this work, Cusser et al. (2021) used the broken window 
algorithm to mine more than 100 additional long-term population 
datasets and found that ~50% of studies had temporal dependencies 
between treatments that could not be reliably detected with fewer than 
10 years of data. Furthermore, they linked the stability of the abiotic 
environment to the ability to detect trends: simply, experiments taking 
place in more variable environments were more prone to spurious trends 
and required more data and time to establish experimental differences. 
In another study, Christie et al. (2021) compiled 289 surveys of deer tick 
activity produced by public health departments and researchers pri-
marily in the northeast and Midwest United States and subjected each 
set of observations to the broken_window algorithm. They found none of 
the survey data reached stability time in less than 5 years, indicating that 
shorter term studies may be insufficient to infer long term population 
dynamics. Bruel and White (2021) used a similar approach to investigate 
the optimal sampling of sediment cores for constructing phytoplankton 
communities. However, they examined the sampling effort required to 
detect abrupt shifts (i.e., changepoints) in community structure, as 
opposed to simple linear trends over time. This work highlights the need 
for future studies investigating the sampling required to detect patterns 

beyond those from simple linear regression. Other related work has 
focused on estimating the length of time series required to achieve high 
statistical power (White, 2019), and studying data-poor fisheries (White 
and Bahlai, 2020): taken together, these tools will enable previous work 
to be mined to understand the characteristics of trends common to those 
systems, and enable future studies to be designed to maximize infor-
mation value. 

The broken_window algorithm uses the longest available study 
duration as a proxy for ‘truth’ as its core assumption. However, long- 
term studies themselves are not immune to uncovering misleading 
trends. Methodology, site selection, and periods of disturbance 
following the initiation of a long-term study may inherently bias the 
apparent trajectory of a system (Fournier et al., 2019). This highlights 
the importance not just of study duration, but of the selection of study 
starting and ending points: capturing an outlying data point or a high or 
low in a system’s natural variability near the beginning or end of the 
study period will be highly influential on the statistical outcome, and 
thus the conclusions reached (Chatterjee and Hadi, 1986; Fournier et al., 
2019). Understanding and characterizing these highly influential ob-
servations in the analysis process is essential to our interpretations of 
these ecological trajectories. Thus, it is important to consider these 
biasing factors when using long-term data in algorithms like the one 
presented herein: any statistical method is likely to be influenced by 
outlying or unlikely observations. 

The broken_window algorithm uses a linear model as its underlying 
structure, which is the simplest case of a relationship a response variable 
might take with time. However, many ecological processes are not linear 
with time and may be better described with non-linear approaches 
(Bahlai and Zipkin, 2020; Knape, 2016; Wauchope et al., 2019). In the 
initial deployment of this algorithm, we created a tool for the simplest 
case that would be applicable under a whide variety of circumstances, 
but future iterations should consider multiple underlying model struc-
tures, as well as contingencies for unevenly spaced observations or 
missing data. 

6. Conclusions 

The ever-increasing availability of long-term data, fostered by the 
growth of technology that enables automated collection and sharing of 
data products, and the infrastructure availability and ‘maturity’ of 
projects like the US (and international) Long Term Ecological Research 
networks (Brunt et al., 2002) and more recently, the National Ecological 
Observatory Network (SanClements et al., 2020; Schimel et al., 2007) 
present several key opportunities for new understanding of temporal 
processes in ecology. Not only can these data be used to observe long- 
term processes in their respective systems, these data can be used to 
contextualize the vast amount of data produced by shorter-term studies 
in our field. Ecology, until relatively recently, was a field defined by data 
scarcity: studies took place at local scales, over time periods manageable 
to small groups of researchers, and these shorter-term studies remain the 
most common output in ecological research (Peters, 2010). Their work 
represents a huge human undertaking, however, and it is critical that we 
are able to interpret the insights these observations provide 
appropriately. 

The broken_window algorithm provides a framework for under-
standing how ecological data produced by different domains behaves at 
different temporal scales. Thus, this tool can be used to synthesize data 
describing ecological processes, specifically examining how system 
properties (such as landscape, site, seasonality, lifespan in the case of 
organisms, management regimes, cycles in population trends) affect the 
likelihood of a spurious trend being observed. In future work, we will 
examine data of differing structures to identify the characteristics of 
observation periods that are more likely to produce misleading results, 
and conversely, the characteristics of time periods that are consistent 
with longer system trends. This framework will support ongoing 
research efforts to separate trends in ecological systems from natural 

C.A. Bahlai et al.                                                                                                                                                                                                                               



Ecological Informatics 64 (2021) 101336

7

variability, human biases and research-specific influences and underly-
ing processes, and provide critical insight into the scaling to temporal 
processes between short- and long-term experimental designs. 
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