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A B S T R A C T   

Environmental monitoring is a key component of understanding and managing ecosystems. Given that most 
monitoring efforts are still expensive and time-consuming, it is essential that monitoring programs are designed 
to be efficient and effective. In many situations, the expensive part of monitoring is not sample collection, but 
instead sample processing, which leads to only a subset of the samples being processed. For example, sediment or 
ice cores can be quickly obtained in the field, but they require weeks or months of processing in a laboratory 
setting. Standard sub-sampling approaches often involve equally-spaced sampling on depth. We use simulations 
to show how many samples, and which types of sampling approaches, are the most effective in detecting 
ecosystem change. We test these ideas with a case study of Cladocera community assemblage indicators 
reconstructed from a sediment core. We demonstrate that standard approaches to sample processing are less 
efficient than an iterative approach. For our case study, using an optimal sampling approach would have resulted 
in savings of 195 person–hours—thousands of dollars in labor costs. We also show that, compared with these 
standard approaches, fewer samples are typically needed to achieve high statistical power. We explain how our 
approach can be applied to monitoring programs that rely on video records, eDNA, remote sensing, and other 
common tools that allow re-sampling.   

1. Introduction 

Environmental monitoring is one of the core components to modern 
ecosystem research and management (McDonald-Madden et al., 2010; 
White, 2019; Lindenmayer et al., 2020). Within an adaptive manage-
ment framework, monitoring is needed for both learning about the 
system under study and assessing the effectiveness of management in-
terventions (Lovett et al., 2007). Increasingly, long-term monitoring 
programs, like the Long Term Ecological Research (LTER) Network in 
the USA, are becoming available (Maguran et al., 2010). However, 
environmental monitoring can still be logistically difficult, expensive, 
and time-consuming, especially when further processing is needed 
following sample collection (Zhang and Zhang, 2012). Thus, for many 
fields there is a disparity between the amount of data that can be ac-
quired and stored, and the ultimate number of samples that can be 
processed. Therefore, monitoring programs need to be designed in such 
a way to address the question of interest while using limited resources 
efficiently (Legg and Nagy, 2006; McDonald-Madden et al., 2010; Len-
gyel et al., 2018; Lindenmayer et al., 2020). 

Monitoring program characteristics must be tightly linked to the 
questions of interest. For example, White (2019) found that 72% of 
vertebrate populations required at least 10 years of monitoring to detect 
significant changes in the population size over time. The specific number 
of years required depended on the species biology and the detection 
method used (White, 2019). In addition, the sampling effort required 
differs depending on the question. For example, questions regarding 
phenology would require many sampling points within a season and 
across years (Filippa et al., 2015; White and Hastings, 2020). Other work 
has focused on the frequency of monitoring (Wauchope et al., 2019), the 
impact of allocating monitoring resources spatially versus temporally 
(Rhodes and Jonzen, 2011; Weiser et al., 2019), imperfect detection 
(Morant et al., 2020), and the costs and benefits of increasing sampling 
breadth relying on citizen science (Weiser et al., 2020). Lastly, both the 
ecological and economical costs of failing to detect a true trend (type II 
error) have to be weighed against the risks of false (type I error) 
detection (Mapstone, 1995). Given limited budgets, monitoring pro-
grams need to be designed to be cost-effective (Caughlan, 2001; Gran-
tham et al., 2008; Bennett et al., 2016). 
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Because ecological systems are dynamic in both space and time, it is 
essential that sampling designs account for spatio-temporal dynamics 
(Williams et al., 2018). To estimate a particular parameter, e.g. popu-
lation abundance, optimal spatial sampling strategies are based on 
spatially balanced sampling (Kermorvant et al., 2019), while optimal 
temporal sampling strategies are more cost efficient with a targeted 
sampling, e.g., around the period of reproduction (Jackson et al., 2008). 
In either case, sampling time and locations can be chosen in an iterative 
process to be cost-effective and reduce the uncertainty in the process 
(Hooten et al., 2009). With the ability to choose precisely when to 
sample, we can move beyond random, interval, or opportunistic sam-
pling designs. This is particularly relevant in situations where a subset of 
samples already collected need to be analyzed. 

Because of new technological advances, there are many data sources 
that can be derived long after the actual processes occurred. For 
example, sediment cores can be retrieved from aquatic ecosystems with 
little sediment disturbances, such as lakes or lagoon, allowing recon-
struction of past ecological communities or conditions (Cohen, 2003). 
Similarly, environmental samples (e.g. water, soil) can be saved and 
processed later for composition, including eDNA (Bohmann et al., 
2014). Likewise, photo- or video-based monitoring can record snapshots 
of a system and be analyzed later (O’Connell et al., 2011; Mallet and 
Pelletier, 2014). In each of these cases, decisions have to made about 
how much data to extract from the previously collected samples (Zhang 
and Zhang, 2012). Should the paleoecological core be analyzed at every 
centimeter? Should the video be assessed once per minute if automated 
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Fig. 1. Conceptual diagram illustrating the process of taking (a) simulations of a time series and (b) selecting a single simulation to analyze with three different 
sampling approaches: (c) random, (d) regular, and (e) iterative. The iterative sampling approach requires (f) adding samples around a detected changepoint until (g) 
a certain level of accuracy is achieved. 
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tools are not available? As long as processing samples is expensive, these 
trade-offs will remain. 

Building on ideas from dynamic survey design and optimal moni-
toring research, we develop a set of tools to determine the appropriate 
number of samples and sampling approach when dealing with data 
sources where only a subset of samples are analyzed. We tailor our 
analysis to the detection of a changepoint in a time series, but our 
approach is applicable to other questions as well. Changepoints are an 
important characteristic of a time series as they can indicate a under-
lying change in ecosystem processes (James and Matteson, 2014). We 
focus on paleoecological core samples as one example of this type of 
data. We examine the situation where the goal is to detect the time at 
which a significant change in an ecological community occurs, i.e. a 
changepoint. However, our approaches are widely applicable to other 
questions and data types. We first investigate these tools using a 
simulation-based approach. We then test the tools on a case study from a 
paleosequence of Cladocera community assemblage from Lake Varese 
located in the subalpine region of north-western Italy (Bruel et al., 
2018). 

2. Sampling approaches and changepoint detection 

For both our simulations and case study, we investigate the effect of 
different sampling strategies on our ability to detect a changepoint. We 
begin by either creating simulated time series or using an actual 
paleoecological time series (Fig. 1). We then subsampled each time se-
ries to test the effect of three different sampling approaches along with 
varying the sample size (Fig. 1c–f). We compared the estimated 
changepoint from the subsampled time series to that of the full time 
series as a measure of the effectiveness. 

The random sampling approach involves taking a set number of 
random points throughout the time series (Fig. 1c). In the context of 
sediment cores, this would mean analyzing community composition at 
random locations along the core. Random sampling is recommended in 
designs aimed at quantifying the average size of a population (spatial 
approach) (Nad’o and Kaňuch, 2018). We hypothesize that random 
sampling will perform the worst in estimating the changepoint. Regular 
sampling is commonly used (e.g., pigments in Milan et al., 2015) and 
requires that a set number of samples be taken at regular intervals 
(Fig. 1d). Lastly, iterative sampling involves first taking a set number of 

samples (i.e., regular sampling) and then iteratively adding samples 
until a pre-determined level of precision is achieved (Fig. 1e–g). In the 
context of a changepoint, this means adding a new sample near the best 
estimate for the changepoint and iteratively updating the estimate 
(Fig. 1e–g). For each scenario, we begin by sampling the first and last 
sample to ensure coverage of the whole time period. We describe each 
approach in more detail in the supplementary material and provide 
code. 

We detect changepoints with the function e.divisive in the R package 
ecp (James et al., 2019). There are several methods available to detect 
changepoint (reviewed in James and Matteson, 2014); e.divisive is a 
divisive hierarchical estimation algorithm for multiple change point 
analysis. We chose this method because it is able to perform multiple 
change point analysis for both uni- and multi-variate time series, 
without a priori knowledge of the number of changepoints. Herein, we 
focus on detecting the most important changepoint (i.e. the one of 
largest magnitude), although we tested the method on a time-series that 
would have multiple changepoints (Fig. S3). In order to test the per-
formance, we detected the “true” changepoint on the whole time-series, 
and compare the changepoint found on the sub-sample with the “true” 
one. The distance to true changepoint served as the performance 
diagnostic. 

3. Simulation approach 

3.1. Simulation model 

We began with a theoretical exploration of the sampling re-
quirements to detect a changepoint. We modeled a simple first order 
autoregressive (AR-1) process (the discrete-time version of the Orn-
stein–Uhlenbeck process) with a response variable (Xt) that represents 
either population size, biodiversity, or some other unidimensional 
metric of community composition at time t. The model includes tem-
poral autocorrelation (ϕ), the mean of the process (μX), and a white 
noise term (wt). The white noise term is a normal distribution with mean 
(μw) and variance (σ2): 

Xt = μX + ϕ(Xt− 1 − μX) + wtwt̃Norm(μw, σ2). (1) 

We included a changepoint by shifting μX at time τ given a specific 
shift size (δ). 
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Fig. 2. Regular sampling statistical power (fraction of 100 simulations which detected a changepoint within five time points of the true changepoint) for different 
levels of standard deviation (σ), lag-1 autocorrelation (ϕ), and shift size (δ). For each parameter combination, 20 samples were used. An increase in samples would 
increase the statistical power across this graph. 
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We explored how each of these model parameters affected our ability 
to detect a change point. We simulate an entire time series to serve as the 
“true” data for comparison (White and Bahlai, 2020). We specifically 
study how the number of samples and the type of sampling affects the 
detection probability. For simulations, statistical power is the fraction of 
simulations that were able to detect a changepoint. We define an ac-
curate changepont detection if an estimate is within five time points 
(given a time series of 100 time points) of the true changepoint. The 
minimum number of samples required is the number needed for 0.8 
statistical power. 

3.2. Simulation results 

In line with theory on optimal monitoring, we found that the prob-
ability of correcting identifying a changepoint decreased with smaller 
levels of population variability (σ) and autocorrelation (ϕ) (Fig. 2). We 
also found that the probability of correct changepoint detection in-
creases with larger shift sizes, which is essentially the effect size (Fig. 2). 
In line with theory, if the shift size was small, and thus there was no 

changepoint, there was almost never enough power to detect a shift. 
Similar results have been shown for the detection of linear trends 
(White, 2019). There were interaction effects between the variables. For 
example, autocorrelation was only important if population variability 
was high (Fig. 2). Thus, the number of samples required to obtain high 
statistical power (above 0.8) increased with larger population vari-
ability, lower autocorrelation, and smaller shift sizes (Fig. 3). As pre-
dicted, iterative sampling performed best, followed by regular and 
random sampling (Fig. 3). The distance to the true changepoint, and 
consequently the minimum number of samples required, was lower for 
iterative sampling. (Fig. 3). 

4. Case study 

4.1. Case study background 

We examined the performance of our approach to detect change-
points in a paleosequence. Paleolimnology allows to reconstruct past 
environments over long periods of time, under the premise that 
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sedimentation was not perturbed (low mixing and disturbances). A 
sediment core is typically subsampled to narrow down periods of time to 
be compared, either at regular intervals (e.g., Milan et al., 2015), or 
continuously (e.g., Perga et al., 2015). 

We tested different sampling methods on a real community time 
series from Lake Varese (IT), with the objective to detect the main 
changepoint in zooplankton Cladocera assemblage. Lake Varese is a 
small (14.8 km2), deep (zmax = 26 m), monomictic lake, in the subalpine 
region of north-western Italy (238 m asl). It underwent hyper- 
eutrophication over the 20th century due to increase in nutrient loads 
from the watershed. Nutrient status was responsible for restructuration 
of the lake communities across trophic levels (Crosta, 1999; Bruel et al., 
2018). Air temperature is now driving changes in plankton communities 
(Bruel et al., 2018). 

In a previous study, Cladoceran assemblage was reconstructed 
continuously with a 1-cm subsampling resolution (2–3 years resolution), 
from a 74-cm sediment core covering the 1816(±26)—2010 time period 
(Bruel et al., 2018). Our objective was to evaluate whether the same 
changepoints could be identified using fewer samples. In this previous 
study, the variability in the community was summarized into indepen-
dent axis using Detrended Component Analysis (Hill and Gauch, 1980). 
Changepoints were then detected on the first component (46% of the 
total variability) in years 1926, 1946, and 1983. We defined these as the 
“true” changepoints given they came from an analysis of the complete 
sequence The 1983 changepoint was the largest in magnitude, hence the 
changepoint we sought to find with our method. We also identified 
second and third changepoints (Fig. S3). 

In line with our simulation approach, we subsampled the full record 
(74 observations) using the three methods described earlier (random, 
regular, iterative). These subsamples were from the initial community 
dataset (Fig. 6a). We reduced the dimensionality of the assemblage-level 
data to an ordination axis using the same method in the original study, 
and detected the changepoint on the first component (univariate vec-
tor). In the case of the iterative method, a new sample was added in the 
temporal region closest to the estimate for the changepoint until a more 
precise estimate was obtained (Fig. 6d). For each of the three methods, 
we examined the error (difference between the true changepoint and the 
detected changepoint) when using different numbers of samples. 

4.2. Case study results 

We found that random sampling performed the worst, as change-
point analysis was left to chance (Fig. 5). Regular sampling provided 
good estimates from 8 samples, but detecting the true changepoint 

depended on the interval falling close to the true changepoint (i.e., also 
left to chance). Iterative sampling performed the best, as no more than 9 
samples were ever necessary to get the true changepoint (Fig. 5c). We 
show how iterative sampling slightly changes the scores on the first 
component but not the overall ordination, as more samples are added 
(Fig. 6). 

We also tested how the three methods performed at detecting other 
changepoints of lower magnitude (as three changepoints were detected 
in the initial study, Bruel et al., 2018). Iterative sampling still performed 
best, especially if an higher number of initial samples (7) was chosen 
(Fig. S3). 

To show the generality of our approach, we examined the same 
sediment core data, but examined total abundance as opposed to com-
munity composition (Fig. S4). We tested the three subsampling methods, 
and it took 11 samples to find the “true” changepoint (Fig. S5). The 
initial 5 subsamples analyzed were the same than the subsamples 
analyzed to answer the question of the change in community (Fig. 5c). 
The implication is that a very limited number of processed sample can 
rapidly and efficiently be used to narrow down different questions on a 
same dataset. In addition, we examined the same abundance time series, 
but with linear and generalized additive models (GAMs). In line with 
findings from White (2019), we found that the flexibility of GAMs allow 
the use of less samples (Figs. S6, S7). 

5. Discussion 

Due to time or funding limitations, there is often a difference be-
tween the number of samples collected and the total number of samples 
that can later be processed. When the processing time is dispropor-
tionately higher than the collection time especially, a subsampling can 
be done prior to processing. A decision must then be made as to which 
subsamples to analyze. To address this question in the context of 
detecting changepoints, we tested three subsampling methods: sub-
sampling random points, regular intervals, and an iterative sampling 
approach (Fig. 1). We found that the iterative method was systemati-
cally better at detecting changes than the two other methods, random 
subsampling being the least efficient (Figs. 4, 5, S1, S2). Autocorrelation, 
variance, and shift size, had an effect on how many samples were needed 
to detect the shift, but did not change which approach was optimal 
(Fig. 3). 

Multiple subsampling strategies can be chosen (Fig. 1), but only 
iterative sampling detected the true changepoint with a limited number 
of samples (Fig. 4c). Analyzing 11% of the sample was enough in most 
cases to approach the “true” changepoint. Applied to the real case study, 

a. Random sampling b. Regular sampling c. Iterative sampling 

10 20 30 10 20 30 10 20 30

0

10

20

30

40

Total number of samples analyzed

D
is

ta
nc

e 
to

 tr
ue

 c
ha

ng
ep

oi
nt
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the iterative method allowed us to find the main changepoint with only 
9 samples analyzed (Fig. 5). The method also worked well to detect other 
changepoints of lower magnitude (Fig. S3). Bruel et al. (2018) processed 
one sample at each centimeter in a 74-cm sediment core. Each sample 
took an average of 3 h to process. We found that using an iterative 
approach would have eliminated 195 h of sample processing, or about 
24 days, which is just a little over a month of work. This correspond to 
several thousands of US dollars depending on labor costs. 

Our approach goes beyond just paleoecological analyses. Running 
simulations or using past data to understand the amount of sampling 
effort required is important in many systems where sample collection or 
processing is expensive (White, 2019; White and Bahlai, 2020) or 
logistically difficult, such as with remote field sites. The specific sam-
pling techniques can also be compared to determine the optimal strategy 
in terms of accuracy and cost. Similarly, in order to evaluate ecosystem 
phenology, Filippa et al. (2015) used similar techniques to show the 
effect of not only different levels of sampling, but also the effect of using 

different indices altogether. Our specific approach applies to situations 
where more subsamples can be added, or processed, after the dynamics 
occurred (Zhang and Zhang, 2012). It corresponds very well to paleo-
ecological data: samples are taken long after the phenomenon of interest 
occurred, and allows subsampling at finer or rougher intervals (Wingard 
et al., 2017). However, both different types of data and different ques-
tions than those used here can be addressed with the same approach. 
Suppose instead that the goal was to detect a change in relative abun-
dance over time with video-based approaches where automated tech-
niques are not possible. It is often not practical to watch entire videos, so 
it can be useful to choose strategic time-points that would address a 
specific question of interest. Using an interval sampling approach, one 
could take a fixed number of samples to start. The trend over time from 
simple linear regression could be taken. Then, samples can be taken at 
random locations one-by-one and to see which samples have the largest 
effect on the trend estimates. If a particular sample has a large effect on 
the trend, then it would be best to choose another nearby sample. 
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Sampling would continue until the trend estimate reached an equilib-
rium. Thus, the iterative sampling approach is particularly relevant to 
data sources where additional samples can be taken long after the initial 
dynamics. These approaches would also be appropriate for environ-
mental samples, such as water or soil, that can be analyzed later or eDNA 
that can be extracted from previously-collected samples (Bohmann 
et al., 2014). The same approaches could also be used in studying evi-
dence of stressers found in tree rings or coral reef cores (Carilli et al., 
2012; Pretzsch et al., 2013), pollen in aerial traps or sediment cores to 
address phenological questions (Haselhorst et al., 2013), and many 
others situations described in White and Bahlai (2020). 

Our approach is applicable to a wide range of systems and questions, 
but it does have limitations. When less resources are needed for sample 
analysis, as opposed to collection, investigators will likely be able to 
process every sample, and analyzing all samples to obtain a whole pic-
ture may be preferred. We note that if resources need to be saved by 
collecting less samples in the first place, then regular sampling performs 
better than random sampling (Figs. 4, S1, S2). Our specific iterative 
approach for detecting changepoints is also not appropriate for systems 
where changepoints are not expected. Instead, more flexible models (e. 
g., GAMs) might be more appropriate (Fig. S7). Another example where 
our method is less useful is when addressing questions that require a 
continuous time series, or at least a regular sampling interval. For 
example, continuous, high-resolution subsampling of a time-series is 
generally required to detect critical slowing-down or early warning of 
shifts (Frossard et al., 2015; Doncaster et al., 2016). 

However, recent work suggest that combining indicators (in the 
specific study, trait dynamics and abundance-based early warning sig-
nals) allows forecasting population collapses even with at lower reso-
lution and time-series length (Arkilanian et al., 2020). Critical slowing 
down does not necessarily result in a shift, and a shift can occur without 
critical slowing down (Spears et al., 2017). Signs of critical slowing 
downs are important to understand and recognize because they provide 
potential early warnings (Doncaster et al., 2016), but in terms of man-
agement, knowing the timing of a shift can have larger implications in 
addressing the underlying driver. Thus, selecting a set number of sam-
ples or specific approach may also limit what future questions can be 
asked. 

6. Conclusions 

Analyzing a subsample of a time series as opposed to the whole time 
series will inevitably leads to a lesser understanding of the phenomenon 
observed (White, 2019). We show here that an informed subsampling 
can still allow detection of critical information, such as a changepoint in 
a time series. Monitoring programs have to be able to address our 
questions of interest with sufficient statistical power. In addition, opti-
mizing sampling efforts is valuable given the high costs of many moni-
toring programs (Caughlan, 2001; Bennett et al., 2014). Thus, costs of 
monitoring have to weighed against the value gained from mon-
itoring—a value of information approach (Lovett et al., 2007; Bennett 
et al., 2018). Monitoring programs should try to anticipate the potential 
questions of tomorrow, and reducing the data collected, or analyzed, 
must be done with the best foresight possible on how these data may be 
necessary to manage ecosystems in the future. If only a subsample of the 
samples can be analyzed, it may be better to choose samples strategically 
as opposed to random or regular sampling. This can improve the accu-
racy of the results and reduce costs overall. 

7. Data availability 

Data and code for all the figures can be found athttps://github. 
com/rosalieb/temporal-sampling. 
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