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Abstract

variance in population size.

structure and demographic stochasticity are important.

Stochasticity

Background: Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently
vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to
manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics.
In particular, factors such as age-structure, density-dependent feedbacks on reproduction, and demographic
stochasticity are important for understanding population trends, but are often difficult to assess. Lemon sharks
(Negaprion brevirostris) have a pelagic adult phase that makes them logistically difficult to study. However, juveniles
use coastal nursery areas where their densities can be high.

Results: We use a stage-structured, Markov-chain stochastic model to describe lemon shark population dynamics
from a 17-year longitudinal dataset at a coastal nursery area at Bimini, Bahamas. We found that the interaction
between delayed breeding, density-dependence, and demographic stochasticity accounts for 33 to 49% of the

Conclusions: Demographic stochasticity contributed all random effects in this model, suggesting that the existence
of unmodeled environmental factors may be driving the majority of interannual population fluctuations. In addition,
we are able to use our model to estimate the natural mortality rate of older age classes of lemon sharks that are
difficult to study. Further, we use our model to examine what effect the length of a time series plays on deciphering
ecological patterns. We find that—even with a relatively long time series—our sampling still misses important rare
events. Our approach can be used more broadly to infer population dynamics of other large vertebrates in which age
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Background

Many large marine megavertebrates (e.g. sharks, tur-
tles, mammals, seabirds) are particularly vulnerable to
anthropogenic mortality due to their complex life history
characteristics, including long lifespans, delayed maturity,
low fecundity, and extended migrations [1-4]. These ani-
mals often act as ecological keystones, and their removal
can lead to considerable ecosystem changes such as
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cascading ecological effects on lower trophic levels [5-9].
For example, as predators, sharks not only regulate their
own prey populations but also those of species deeper in
the food web [5,7-9] (see also [10] for a recent review).
Given their importance to ecosystem stability and the
multiple anthropogenic threats they face [11,12], it is
imperative that we develop a better understanding of
shark population dynamics, particularly to identify pri-
mary drivers of annual population variation.
Physiologically structured population models [13,14]
that incorporate delayed breeding [15,16], density-
dependent mechanisms [13,17], demographic stochastic-
ity [18-22], or some combination of these processes,
have been applied to many ecological systems to answer
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questions related to population dynamics, conservation,
and management. In examining shark populations, phys-
iologically structured discrete demographic models have
been used to study overfishing and population via-
bility, calculate specific demographic parameters, and
predict population dynamics [23-30], also see review
[31]. Although these demographic models are useful,
they typically have three key shortcomings [31]: (1)
they typically include assumptions that are biologically
unrealistic, including density independent, deterministic
mechanisms, which makes application of model outputs
to real data difficult to accept; (2) given that these mod-
els are deterministic, they cannot capture demographic
stochastic events, which are likely to be important drivers
of interannual population fluctuations; and (3) parameter-
ization and validation of such models from data are often
logistically difficult and require long-term field operations
[2,32].

The third challenge has been met by a longitudinal field
study of lemon sharks (Negaprion brevirostris) at Bimini,
Bahamas. Data from this study includes an annual pop-
ulation census of juvenile lemon sharks (ages 0-2 years)
from 1996 to 2012. The number of juveniles in our study
population (see Methods) typically fluctuates between 50
and 100 sharks, although the complete range is estimated
to be between about 35 and 150 (Figure 1), which illus-
trates the significance of annual fluctuations in the juve-
nile age class of this lemon shark population. Fecundity
and early juvenile mortality rates have been estimated pre-
cisely using mark-recapture and genetic methods [33-35].

The causes of annual variation in population size remain
unclear for many species, and we are unaware of any
previous studies that have assessed these causes in detail
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for lemon sharks. Furthermore, little is known regarding
mortality rates of both the larger juveniles that have left
the nursery site (ages 3-11) and mature adults (ages 12+)
[36,37].

Here we present a mathematical model detailing annual
dynamics of the lemon shark population in Bimini,
Bahamas. The model is physiologically structured, with
age class as the (discrete) structuring variable. Although
the model tracks all age classes, the population of juveniles
is the only observable connection to the real population.
The model is similar to that of Hoenig and Gruber (1990),
who studied a deterministic Leslie matrix model. Here,
we introduce demographic stochasticity by making births
and deaths stochastic, although we fix environmental
parameters. We use inverse pattern-oriented techniques
that leverage fecundity and juvenile mortality rate esti-
mates obtained from the field study described above to
obtain bounds on unobserved parameters, particularly
adult mortality, with a minimum of assumptions extrane-
ous to the model.

Results

The Bimini nursery data suggest that, on average, about
77 juvenile sharks inhabit the lagoon at census time,
with interannual variance, s> ~ 498 (Figure 1). Our
age-structured stochastic model depends on 3 param-
eters: mean litter size (denoted 1), adult mortality (1)
and a parameter controlling density dependent feedback
of number of juveniles on juvenile mortality (denoted &,
which measures the effect of competition among juveniles
in the nursery; larger k means less effect of competition;
see Methods for details and Table 1 for a summary
of notation). Setting these parameters to the following
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Figure 1 Juvenile population data from the past 17 censuses in the North Sound of Bimini.
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Table 1 Notation and interpretations of model
parameters, their default values, ranges and sources
for the lemon shark (Negaprion brevirostris)

Parameter  Meaning Default  Range Source
A Pups born per 6.1 1-18 [34,35]
female
h Juvenile mortality 1 NA This paper
Hill parameter
k Juvenile mortality 100 0-200 This paper
shape parameter
tmax Maximum age 25 20-35 [23,26]
for adult
Xm Age at maturity 12 NA [23,26]
m Mortality rate for 0.15 0.05-0.30  This paper
all animals above
age one

values—(litter size) A = 6.1 sharks per female, (adult mor-
tality probability) 1 = 0.15, (density-dependent feedback)
k = 100 sharks—generates a mean juvenile population
size in model simulations that matches that observed in
the field; however, at these parameter settings the model
fails to generate the proper variance. Using the Monte
Carlo technique described in the Methods section, we
generated an estimate of the model’s sampling distribu-
tion of the variance for samples of size 17 years. The
mean of this distribution of variances, denoted o2, , is 176
(n = 100 trials), which represents only 35 percent of s in
the actual data set.

To explore the sensitivity of mean and variance to
variations in parameters, we systematically tested 9000
possible combinations of the three model parameters
(A, u, k) throughout a generous region of parameter
space that contained biologically plausible values for all
parameters (see Methods). For each of the 9000 points in
parameter space, we compared field (census) estimates of
annual mean and variance of population size to annual
mean and variance of simulated population size. As above
(and described fully in Methods), each of the 9000
points in parameter space was associated with a Monte
Carlo estimate of the sampling distributions for mean
and variance for samples of size 17. For each parameter
combination we performed a 2-tailed Monte Carlo test of
the observed mean and variance against their estimated
sampling distributions generated by the model. For ease
of exposition, we call the fit “good” if neither observed
mean nor variance fell in the rejection region of the
sampling distribution and the other criteria explained in
the Methods were met; otherwise, the fit was deemed
“bad”. At most, but not all, of the tested points, the
fit was bad. Therefore, the volume of the possible
parameter space that admits dynamics having any chance
of representing the actual Bimini population is greatly
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constrained (Figure 2), even when litter size is allowed to
vary from 1-15. As described in the Methods, we consid-
ered two possible distributions of litter sizes: one Poisson
and the other derived from field data. In Figure 2 we show
the results assuming litter sizes were Poisson-distributed
according to equation (3). However, using the observed
distribution of births per female (Figure 3) instead of the
Poisson assumption further tightens our constraints on
the mortality parameters k and p (Figure 4).

For combinations that fit the data based on our criteria,
we found that, while demographic stochasticity alone can
correctly predict the mean population size in a sizable
region of parameter space, at best it can account for
only 33% to 49% of the observed variance—nowhere in
parameter space was the observed variance in the inner
quartile range of the sampling distribution of the vari-
ance. These results suggest that either the model is valid
and our sample happened to have an extremely unlikely
variance, or the model is not valid and something in addi-
tion to demographic stochasticity is generating population
fluctuations.

This sensitivity analysis also allows us to use inverse
pattern-oriented techniques (see Methods) to obtain
bounds on the parameters that may be used to generate
prior probabilities for Bayesian analysis of a more com-
plete model. The pattern-oriented analysis places tight
constraints on adult mortality (v = 0.14 — 0.17), which
generally agrees with the indirect methods for estimating
mortality in this population [38-40] (Table 2), which place
mortality between 0.086-0.179. Interestingly, the half-
saturation value (k) is much less constrained; good fits can
be obtained for any k > 100 (Figure 4).

It is important to note that even for parameter combina-
tions that qualified as good fits, all greatly underestimated
annual variance observed in the actual data.

In general, our model dynamics were robust with
respect to the two assumed distributions of per-female
fecundity—either Poisson or empirical. Specifically, both
produced very similar regions of parameter combina-
tions that matched Bimini (Figure 4), with the nuanced
exceptions noted above. In addition, however, the actual
distribution of litter sizes consistently generated a higher
variance in annual population size than did the Poisson
distribution. Therefore, although the Poisson distribution
is a reasonable choice to use when the actual distribution
is not available, one needs to be aware that it tends to
underestimate variance.

As a further test of how well our model represents
the variance in juvenile population size, we examined the
effect of study length (or sample size) on characteriza-
tion of the observed variance. We compared time intervals
of various lengths by generating sampling distributions
of the variance for samples of various sizes, from 10 to
400 (Figure 5). The median of the estimated sampling
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Figure 2 Region of parameter space in which simulations exhibited a “good” fit to the data of the lemon shark population based on
criteria described in the main text. Each filled circle represents one of the 9000 parameter combinations that met the criteria of a good
representation. The change in color represents degree of half saturation value, with red indicating smaller values of k.
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Figure 3 Distribution of litter size per female lemon shark in North Bimini. Grey bars: data from [34,35], from 1996 to 2010 (n = 264). Red
curve: discrete Poisson distribution, Pr{N = j} = e~* %/ with A equal to the mean of the litter size distribution depicted by the grey bars.
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Figure 4 Circles represent region of the parameter space in which simulations were a “good” fit to the data (see Methods). Left:
Half-saturation value (k, density-dependence parameter for the first-age class mortality rate) versus the mortality rate for subadults and adults for
series of combinations utilizing the actual distribution of litter sizes for fecundity rate. Right: Same as left but uses a Poisson distribution for fecundity
rates. Both pictures represent cases when A was set at 6.1 for the Poisson distribution which is equivalent to the average of the actual distribution of
litter sizes.

distribution of the variance is a generally increasing func-
tion of sample length, as expected since longer samples
have a higher probability of capturing rare demographic
events (e.g., exceptionally large number of pups across all
females or high mortality by chance). Notice that, even
for “studies” of hundreds of years, the observed variance
is always well into the upper tail of the estimated sam-
pling distributions. So, even though the median variance
is higher in 400 compared to 17 year samples (vertical

Table 2 Indirect methods used to calculate mortality rates

Method Relationship Value
Hoenig (1983) (fish) In(Z) =146 — 1.01 In(tmax) 0.167
Hoenig (1983) (cetacean) In(Z) = 0941 — 0.873 In(tmax) 0.154
Hoenig (1983) (combined)  In(Z) = 1.44 — 0.982 In(tmax) 0.179
Pauly (1980) log(M) = —0.0066 —0.279/0g(Lso)
+0.6543 log(K) + 0.4634 log(T) 0.140
Jensen (1996) (age) M = 1.65/Xm 0.138
Jensen (1996) (growth) M=15K 0.086
Jensen (1996) (Pauly) M=16K 0.091

Here M and Z represent natural and total mortality, respectively. Similar analysis
as [41] and [42].

Note: Life history parameters are based on [36]. K, body growth parameter
(0.057); Lo, maximum theoretical length (317.65 cm); xm, age at maturity

(12 years); tmax, maximum age (25); T, mean temperature (27.1°C, [43]).

red line in Figure 5), the observed variance of 498 sharks?
(horizontal green line in Figure 5) would still be remark-
ably large for much larger samples. This further supports
our conclusion that the model fails to match the observed
variance, and that the deviation between expectation from
the model and observation in the field is caused by some-
thing other than random chance.

Discussion
Lemon sharks have complex life histories—they delay
breeding for over a decade, mature in an environment
(nursery lagoons at the Bimini site) vastly different from
their adult habitat (open ocean) and when mature breed
every other year. Also, nursery populations are typically
not large enough (order 10% at most) to buffer demo-
graphic stochasticity; indeed, demographic stochasticity
can dominate dynamics in patchy systems with sizes
orders of magnitude larger than this one [44-46].
Therefore, generalized, deterministic population mod-
els can hope to elucidate only the broadest outlines of
lemon shark population dynamics and should be inter-
preted only in the “ensemble average” sense [44,47]. That
is, deterministic models at best provide an expectation
or mean behavior for an infinite number of Bimini’s
lemon shark populations. Although this abstract notion
of an ensemble mean is sensible and provides some
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Figure 5 Boxplots of simulation variance as a function of the length of study period (sample size). The sample at Bimini is a total of 17 years
(indicated by the vertical red line). The green line represents the variance in the actual population size (s = 498).

insight about expected behavior of the population, under
a suitable definition of “expected”, that insight is limited
because such models provide no measure of the fluctua-
tions about this ensemble average one can expect to see in
any real instance [19].

We addressed this shortcoming by developing a model
of the lemon shark population at Bimini incorporating
both demographic stochasticity and age structure. Despite
the added realism, the model remains relatively simple.
Parameters requiring estimates include the probability
distribution for the number of pups born to breeding
females in a give year, or just the mean number of pups
per female if one assumes a Poisson distribution, two
parameters characterizing density-dependent mortality in
the first age class, and the probability(-ies) of mortal-
ity for all individuals in all other age classes, which here
we assume to be invariant across individuals. We obtain
the reproductive parameters directly from a field study of
the Bimini lemon shark nursery (Figure 3), and we use
an exhaustive parameter search to obtain bounds on the
other parameters.

Fecundity assumptions
As far as we know, this is the first elasmobranch study
to use actual litter sizes derived from genetic data to

parameterize a mathematical or computational model’s
birth function. Typically such studies rely on an assumed
distribution, of which Poisson is usually thought to be a
good first estimate. Since we have a data-driven, realistic
estimate of the distribution of litter sizes, we can explore
the consequences of making the Poisson assumption, and
we find that, in this instance, the Poisson assumption
appears reasonable. If researchers only have mean number
of pups per female, which is often the case without genetic
maternity data, the Poisson distribution approximates the
actual distribution remarkably well (Figure 3). Also, the
regions of viability within the parameter space for both
actual and Poisson distributions are similar (Figure 4).
However, the simulations we ran using the Poisson
assumption consistently exhibited lower interannual vari-
ance than did simulations using the actual reproductive
data. Therefore, although the Poisson assumption gen-
erates estimates of adult mortality that are essentially
identical to those produced using the data, it should
be used with care when modeling to assess population
viability and fluctuations.

Mortality assumptions
In the present study we model density-dependent mor-
tality in the first age class as a nonstationary Bernoulli
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process; that is, the probability of mortality is a generally
increasing function of the number of sharks in this age
class. This assumption is justified based on field data
[28,33]. We represented this density-dependent mortality
using a Hill function (equivalently a Michaelis-Menten
form) from phenomenological considerations only—we
hypothesize a monotonic but saturating increase in
mortality with density, which the Hill function exhibits,
with the added benefits of relative simplicity and plas-
ticity. Nevertheless, the parameters of this function have
biological meaning. In particular, the shape parameter, &,
measures how sensitive sharks are to competition from
same-age conspecifics. As such, although it quantifies an
important biological response, in general it will be very
difficult to estimate accurately in the field. Importantly,
this model demonstrates that practical estimates need not
be very precise. The model matches data for a wide range
of this parameter’s values; in fact, for kK > 100 or so, the
model fit is largely unaffected (Figure 4). Therefore, this
model is robust for parameterizations of k.

The bounds we found for subadult and adult mortality
rates are remarkably narrow (Figures 2 and 4). In fact,
if demographic stochasticity is the only cause of fluctua-
tions, this model predicts that the probability of mortality
for any individual in any age class, after the first, lies
between 0.14 and 0.17. Indeed, above 0.17, populations
invariably die out very rapidly. These mortality estimates
compare favorably to estimates obtained using the tech-
niques in Table 2. If subadult and adult mortality were
to increase by only a few percentage points, the model
predicts rapid extinction. Therefore, we suggest that any
added fishing pressure (there is currently no fishing pres-
sures for lemon sharks at Bimini) to this population would
threaten its sustainability. This result agrees with others in
suggesting that long-lived species with low fecundity, like
lemon sharks, would not be able to handle added fishing
mortality in adult age classes [48].

One difficulty this model faces is a lack of informa-
tion about mortality in subadults and adults. As a first
approximation, we assume a fixed probability of mortal-
ity in all age classes after the first. However, we recognize
the tentative nature of this assumption. In particular, it
is challenging to relate age to mortality rate of untagged
adult sharks. Peterson and Wroblewski [49] suggested that
one method to overcome this problem is to construct a
function that maps shark mortality rate to mass. In this
case age can then be related to mass with conversion
methods such as those used in [27]. This method needs
modifications in situations where mortality is density-
dependent, and it relies on assumptions of von Bertalanffy
growth and reliable estimate of mass, length, and age from
catch data. However, where applicable, this technique may
only be needed for the first few age classes, or at least
until the age at which individual sharks are large enough
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avoid being preyed upon by natural predators [24]. How-
ever, in this study such a technique is unavailable because
size data of adult sharks is limited to length only; length-
to-weight standards exist only for juvenile age classes
(Gruber, unpublished data).

Effect of sampling length

As one might expect, we found that a longer time series
(i.e., sampling length or more years sampled) from simu-
lated populations represent the actual population better
than smaller samples do. The quality of the representation,
as measured by a comparison of observed variance
in population size to the estimated sampling distribu-
tion of variance from simulations, appears to approach
some parametric value asymptotically (Figure 5). This
asymptotic approach requires samples measured in units
of centuries (Figure 5). Apparently, random walks to
exceptionally large or small population sizes, caused only
by demographic stochasticity, occur on time scales on
the order of hundreds of years. This observation further
supports our prediction that environmental stochasticity
generates much of the variance observed in the
17-year dataset we study here. It also calls into question
the generality of conclusions about demographic stochas-
ticity drawn from samples even decades long. If such
forces strongly influence population dynamics of species
with similar life histories, modeling will be required to
correctly characterize the dynamics; studies relying solely
on statistical assessments of data at hand are likely to miss
significant dynamical processes.

Environmental stochasticity
Our primary method for comparing simulation output to
data focuses on comparing observed means and variances
to estimates of those parameters’ sampling distributions
derived by Monte Carlo simulation of the model. Within
the portion of parameter space that admitted reason-
able fits to the data, our simulations consistently matched
the mean population size in the Bimini nursery; how-
ever, simulations regularly generated variances distinctly
lower than that seen in the actual data set, even when
data variance fell with the middle 95% of the sampling
distribution of the variance. Specifically, simulations on
average account for approximately 33-49% of the data
variance. The variance in our models is generated entirely
by demographic stochasticity and any instabilities caused
by delayed breeding and age structure. What, then, caused
the missing variance? We postulate it may have been
a combination of variations in prey abundance, envi-
ronmental stochasticity, including weather patterns and
global climate change, habitat loss, and effects of fishing.
Whatever this environmental stochasticity is, we predict
that its effects are relatively sparse, even though we under-
estimate the actual variance by a considerable amount.
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This prediction follows from a close inspection of the data
from North Sound (Figure 1). It appears that the high and
low points in this time series (2005 and 2008, respectively)
may be “outliers”. Removing these points from the data
set reduces the variance to 164.12, but leaves the mean at
75.13, both of which are in almost exact agreement with
simulation mean and variance at default parameter set-
tings. Therefore, the discrepancy between our simulations
and the data appear to be driven by only two events in the
17-year data run. As stated above, we would hypothesize
that these “outliers” are primarily driven by some type of
environmental stochasticity.

The next step with this model is to incorporate environ-
mental stochasticity so that more accurate assessments
of population viability can be made [19]. However, such
modifications will be difficult because stochastic environ-
mental effects include an enormous array of possibilities.
In addition, predator-prey dynamics, including juveniles
as prey for both conspecifics and other species, should
be modeled. Cannibalism, which has been documented in
this species [50,51], needs careful attention because it can
have very drastic effects on population dynamics [52,53].

Conclusions

We used a stochastic, stage-structured model to identify
the primary determinants of the mean and variance of
juvenile lemon shark population size in Bimini. By includ-
ing all demographic processes thought to be important
in the population, we were able to capture the mean of
the population size. However, we consistently underesti-
mated the interannual variance. Because all the variables
we included in the model were related to demographic
processes, we would predict that this unaccounted vari-
ance is primarily driven by environmental processes. Our
modeling approach is ideally suited to study populations
where basic data on annual population size is available;
all the technique requires are estimates from the data of
mean population size and interannual variance from at
least some age class or classes. However, even this require-
ment can be relaxed. In an inverse modeling scheme, any
measurement made in the field that can be mapped to a
variable in the model could be used to determine which
combinations of parameters are a good fit [54]. The ability
of this technique to predict bounds for parameters that
are not easily estimated in the field has important impli-
cations for management and conservation, generating as
it does predictions about which parameters and life cycle
stages may be most sensitive to anthropogenic impacts
such as overfishing or bycatch. For lemon sharks at Bimini,
we show it is essential to include density-dependent mor-
tality in the first age class and to incorporate delayed
breeding to predict even basic population dynamics.
We also show that adult lemon sharks must have a
mortality rate below 0.17 in order for the population to
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remain viable. Although we have a relatively long data set
(17 consecutive years), longer time series may be required
to capture important, rare stochastic events [55]. These
types of events, whether they be environmental or demo-
graphic, seem to be the primary factor in driving the
fluctuations in the population size of juvenile sharks in
Bimini.

Methods

Study site and field data

This study builds on field work conducted in Bimini
Lagoon, Bimini, Bahamas (25°44N, 79°16W). The Biminis
are located approximately 86 km east of Miami, Florida
and provide habitat for numerous species of fish, arthro-
pods, birds, and mollusks [56]. Of the three lemon shark
nursery sites (as defined by [57]) in Bimini, our study
focuses on the most northerly one, known as the North
Sound. Between 1996 and 2012, standardized gillnet
methods were used to capture juvenile lemon sharks
within 45 days of parturition (Figure 1). These methods
are assumed to be exhaustive, meaning that all individuals
were caught in the study area each year. We use this
assumption in our model. For a more detailed treat-
ment of the gillnetting protocols and yearly censuses, see
[33,35,58,59]. All research was approved by the Bahamian
Department of Marine Resources.

In addition to population censuses, genetic analyses
from tissue samples were used to reconstruct family
pedigrees [34,35,59] from which we estimate per-female
annual fecundity in the Bimini population (Figure 3).
Reproductive-age female lemon sharks (ages 12+) show
strong philopatry to their natal nursery sites, with about
45% returning to a given nursery area to reproduce every
other year [34]. Newborn and juvenile sharks (ages 0-2
years old) stay in these protected, mangrove-fringed
nursery areas [50]. In addition, there appears to be very
little dispersal among nursery sites in this region, so the
population of juvenile lemon sharks in the North Sound is
essentially closed [33]. At about age 3, lemon sharks enter
their subadult phase (ages 3-11), begin to leave the lagoon
area and move to deeper waters [50,60,61].

Our model is constructed to capture this natural history
in such a way that key model parameters, such as mor-
tality rates of different age groups, can be estimated from
field data. This allows us to use inverse pattern-oriented
methods to estimate other life history parameters that
are otherwise difficult or presently impossible to measure
directly.

Model

We model the Bimini lemon shark population as an age-
structured, Markov-chain stochastic process. We choose
this formalism due to the complexity of the lemon shark’s
life cycle—in particular the delay in breeding to the 12th
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year—and because breeding populations at nursery sites
in any given year appear to be too small to be buffered
from fluctuations due to demographic stochasticity. Since
the maximum age for lemon sharks is thought to be 25
years [24,28], we assume a maximum of 26 age classes
(including the 0 age class).

Let x(n) be the shark population vector at census time
n; that is, its elements, x,(n), a € {0,1,...,25}, n €
{0,1,2,...}, represent the number of lemon sharks of age a
in the North Sound population, including all animals born
to and breeding in the North Sound nursery, whether they
are in the nursery or open ocean at census n. Age class 0
represents sharks born the year of the census. To match
the timing of the actual Bimini census, we assume that this
census occurs just after reproduction (i.e., pups are born
April/early May and are sampled late May/June).

Fecundity

We assume an equal sex ratio and that females only repro-
duce every other year after their 11th year of life [34].
The equal sex ratio assumes equal numbers of females
and males born and equality in the survival rates of both
sexes throughout their lives. Let R be a random variable
taking on values in {0,1,2,...} with probability density
{ro,p1,p2,...}. We interpret R as the number of offspring
born to a particular breeding female, and p; as the proba-
bility that a female gives birth to i pups. Let the number of
breeding females in year # be denoted b,; that is,

1 >
b, = E Z xq(n); (1)
a=12

the coefficient of 1/4 follows from the assumptions of
equal sex ratio and biennial breeding with the further
assumption that, for each age class, the proportions of
females breeding in even and odd numbered years are
equal. We assume that all breeding females have the same
reproductive potential regardless of age class, time or pop-
ulation density. Therefore, the set {R;(n);i € {1,2,...,D,}}
is a collection of independent, identically distributed ran-
dom variables, and R;(n) is the reproductive output of the
ith female in year n. Therefore,

by
B(m) =) Ri(n) 2)
i=1

is the total reproductive output of the population in year
n. Note that the dependence of B on # comes only through
the number of breeding females in year #, not through
R(n).

The probability density, {po, p1,p2, ...}, for R(n) can be
obtained from a variety of assumptions. We consider two
possibilities. In some simulations, we obtain this density
from data; in particular, each p; is set to the observed
frequency of females producing i pups (Figure 3), with the
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convention that p; = 0 for all j > 18. In the second case,
we assume that all R;(n)’s are Poisson-distributed with
fixed mean A. In this case, the probability density for the
total population fecundity in year n becomes

oo (Br?)
!

Pr({B(n) =j}) = forall j €{0,1,2,...}.

®3)

A Poisson distribution is often assumed to be a good fit
for a birth process. We explicitly test that assumption here.

Mortality

We assume that the probability of mortality is evenly
distributed across all individuals in a given age class;
therefore, within an age class the number of sharks that
die between censuses is distributed binomially. Generally
speaking, the parameter of that distribution—the proba-
bility that a given shark dies—could potentially depend
on population size. However, in the case of lemon sharks,
we only have evidence for density-dependent mortality in
the first age class [28,33]. There is insufficient evidence to
support either density-dependent or -independent mor-
tality assumptions in other age classes; indeed, very little
is known about lemon sharks once they leave their nurs-
ery area. Therefore, as a first approximation we chose
density-independent mortality for all age-classes above
the first.

In this first age class, the probability that a shark pup
dies between birth (age class 0) and its second census
(i.e., dies in age class 1) is a generally increasing function
of the size of its cohort (xo(#)) in the lagoon in that year
[28,33]. This type of density-dependent mortality may be a
result of reduced prey resources (although the population
does not appear to be prey-limited in any way), preda-
tion from large barracudas, predation from other shark
species, or cannibalism, which has been documented for
this population [50,51]. We model this cohort-density
dependence with a generalized Michaelis-Menten func-
tion (equivalent to a Hill function):

(xo(m))"

Kk + (30 ()"’ @

A (xo(n)) =
with (constant) Hill and shape parameters # > 1 and
k > 0, respectively. Let My(n) be a random variable rep-
resenting the number of sharks born in year # that die
between their first and second censuses. Then My(#) has
probability distribution

Pr({Mo(n) = m}|xo(n)) = <x0r;n)>/1m(1 — =,
me{0,1,...,x0(n)},

(5)
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where we suppress the notation the dependence of /i on
x0(n) for clarity.

As a first approximation, we assume that no age classes
except the first have density dependent mortality. We fur-
ther assume that the probability of mortality for any shark
in age classes 1 or higher is invariant across individuals
regardless of age (this assumption could be relaxed with
our model structure). We denote this constant probability
as u and define M, (n) to be a random variable represent-
ing the number of deaths in age class a € {1,2,...,25}.
Then

Pr((My () = m)|ag () = (xn(q”) ) WA =y,

me{0,1,...

(6)

7xcl(n)}'

It is important to note that many of these assumptions
can be relaxed without altering the form of our model
(see below). For example, here we assume no fishing mor-
tality because there is no shark fishery in Bimini. One
could easily incorporate such an assumption into u, and
even make p age-class- and (or) density-dependent with
fairly obvious alterations to the probability distribution for
mortality, equation (6), which have no effect on the overall
model form.

Model form and parameterization
The development above generates a model with the fol-
lowing form:

xo(n+1) = B(n),
xg(n+1) = xg-1(n) — My—1(n),
x(0) = xo,
ne{01,...},

ae{l,2,...,25),

(7)

where Xg is the initial age distribution.

Application of model (7) to the lemon shark popula-
tion requires field estimates of fecundity and mortality.
Starting with the former, as noted above we can estimate
the probability distribution directly from data (Figure 3),
or we can assume that per-female reproductive output is
Poisson-distributed with mean A. Data from Bimini over
the last 20 years suggests that A ~ 6.1 pups per female
[34], although this value is somewhat lower than that used
in previous modeling studies (perhaps because of the high
mortality of pups between birth and our sampling season;
in this case the 6.1 pups per female simply represents the
number of sharks that make it past that interim period)
[23,28].

Less is known about mortality in this species. The first-
year mortality function, equation (4), requires two param-
eters: the Hill parameter (%) and the shape parameter (k),
whereas non-first-year mortality only requires an estimate
of mean per-shark probability of mortality, ;.. Because of
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the lack of data, we compare model output to population
data from the Bimini study to define a range of poten-
tial values for these parameters using a sensitivity analysis
similar to that in [54]. We describe this method in the next
section.

Simulations and analysis

For clarity of exposition we will refer to sharks from
ages 0 to 2 as juveniles, from ages 3 to 11 as subadults
and above age 11 as adults. Juveniles, as defined above,
are the animals actually caught each year in the Bimini
nursery census. We evaluate the model by comparing its
behavior to the Bimini nursery census data. Model (7) was
implemented and all analyses were conducted using the
open-source computing language R [62].

We compared observed means and variances to esti-
mates of the sampling distributions for mean and variance
generated by simulations of the model. To construct the
sampling distribution for a single parameter set and sam-
ple of length n, we ran 100 simulations of the model
and obtained a sample of n contiguous time steps from
each of the 100 runs. The mean and variance was then
calculated from each sample to give distributions of 100
means and variances of size » for a particular simulation
scenario. These distributions are our estimates of the
sampling distributions for the mean and variance. In a
given simulation, if # < 200, then the simulation was run
for 300 time steps (or until the population went extinct).
The first 100 time steps were removed, and the sample was
taken from a (pseudo)randomly chosen interval of size n
from the remaining interval of 200 time steps. If n > 200,
then the simulation was run for 100+# time steps, the first
100 being eliminated and the sample mean and variance
taken from the remaining # time steps.

This Monte Carlo technique to estimate sampling dis-
tributions allowed us to use an inverse pattern-oriented
technique to quantitatively compare simulations and data
[54,63-65]. With this approach, we evaluate where the
actual means and variances of population size from field
data would fit in the simulation sampling distributions
over variations in parameter values and “study lengths”
(sample sizes). In the first case, we explored 9000 distinct
parameter combinations (A: range 1-15 (step size = 1);
k: range 10-200 (step size = 10); p: range 0.01-0.30 (step
size = 0.01); 4 fixed at 1). Note that, although A is esti-
mated directly from data (Figure 3), it is still of interest
to examine a range of values for A to evaluate the type of
compensatory responses generated by variations in L. We
fixed 7 = 1 in equation (4) because this gave the best
fit (least sum of a squares) to the relationship between
mortality and density obtained by [28]. Likewise, we also
limited k below 200 because larger values produce a linear
mortality rate that greatly underestimates that measured
by [28] and [33].
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To assess how well any given parameter combination
represented the field data, we determined if both the mean
and variance of the field data set fell within the middle 95%
of the estimated sampling distribution (i.e., removing the
extreme 2.5% of low and 2.5% of high values) of means and
variances generated from the simulations of a particular
parameter combination. This amounts to a 2-tailed test
against the model’s parametric distribution with @ = 0.05.
The fit between model and data was deemed “good” if (i)
mean size of the juvenile population size from the data fell
within the middle 95% of the distribution of mean juvenile
population sizes from the simulations; (ii) variance in
juvenile population size from the data fell within the
middle 95% of its distribution from the simulations; and
(iii) the population remained extant after 300 years in each
of the 100 runs. By eliminating parameter combinations
that fail to satisfy any of these three criteria, we effectively
constrain possible values for the unknown parameters
(see Figure 2).

Testing the effect of sampling length

In our initial analysis, we generated sampling distribu-
tions for the mean and variance for samples of size 17
using the techniques outlined above; that is, we sampled
a randomly-chosen sequence of 17 consecutive years—
after initial transient dynamics have settled down—from
each simulation as an analogue to the 17 consecutive
years of field data at hand. However, a question arises
regarding how well a 17 year data set represents centuries
of ecological dynamics [55]. To assess this, we compared
field data to sampling distributions of various lengths of
simulation time series from 10 to 400 years (Figure 5). The
procedures used to derive the sampling distributions of
the variance for these various sample lengths was identical
to that described above.

Reviewers’ comments

Reviewer report 1

Dr. Yang Kuang (School of Mathematics and Statistical
Sciences, Arizona State University)

This paper deals with the task of modeling the lemon
shark population based on a longitudinal data covering 17
years. The model is a hybrid discrete model with stochas-
tic component, It provides not only a way to fit data
sets that are intrinsically stochastic, it also present a way
to quantify the variance of stochasticity. It also covered
the background material and modeling efforts in other
model forms nicely. Nevertheless, I have a couple of minor
comments/suggestions.

1. The model equation (7) has a typo in the equation of
%,(n + 1), which shall be x,_1 (n) — M,_1(n).

Authors’ response: We thank the reviewers (both Dr.
Kuang and Dr. Jacob) for catching this typo. We have
corrected it.
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2. Please either provide a table listing the values of the
census data, or label them near the circles in Figure 1.

Authors’ response: We invite readers interested in obtain-
ing the data to send an email to the corresponding author.

3. Can you explain why you did not try the Leslie matrix
model to fit the data?

Authors’ response: We agree that the model can be
expressed in using a matrix formalism. Our attention
was focused primarily on defining a stochastic process
that could be implemented and analyzed computation-
ally. Since it is a relatively straightforward model, we were
satisfied with the “brute force” motivation given. How-
ever, we agree that a matrix formulation has advantages
vis d vis a more analytical attack on both dynamics
(speaking also to reviewer 2’s (Dr. Jacob’s) comments)
and the inverse problem. The parameter estimation tech-
nique we employ here, however, is indifferent to the model
Sformalism.

Dr. Christine Jacob (Applied Mathematics and Infor-
matic unit (INRA), France)

1. Abstract and general comments

The paper deals with the modeling of the popula-
tion dynamics of lemon sharks at Bimini, Bahamas, from
1996 to 2012 by a (stochastic) time-homogeneous (i.e.
constant environment) and aged-structured branching
process with a population dependent mortality for the
juveniles aged less than 1 year. The population of females
able to have offspring is assumed to be a fixed part of the
animals aged from 12 to 25 years. The model depends
on unknown fecundity and mortality parameters. The
fecundity distribution may either be estimated by the
empirical histogram derived from literature or by a distri-
bution assumed to be Poisson(A). The parameter A and the
mortality parameters are estimated by a range of values
that are validated by a kind of sensitivity analysis given
in the literature (“inverse pattern-oriented technique”):
the empirical mean and variance for each of the 9000
different processes corresponding to a particular parame-
ters combination are compared to the observed empirical
mean and variance (the criteria is described in “Methods
(Simulations and analysis)”).

Authors’response: We thank the reviewer for her accurate
synopsis of our main points. We would like to make a clar-
ification here, however. The fecundity data were obtained
in the field under the direction of one of us (SHG) while
another of us (ERW) participated in some of the field work.
This paper presents the most up-to-date data set which,
at the time of publication, has not been entirely published
elsewhere.

According to the authors, this is the first stochastic
model built for this population dynamics. Taking the
variability of the dynamics is an important issue.

The authors concluded that the simulated variance
explains only around one third of the observed variance.
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The authors notice that the presence of the two observed
outliers (2005 and 2008) is sufficient to explain this
difference and that these outliers could be explained by
some important deviation from a constant environment.
Hence my questions: how to explain the extremal events
(does the hurricane Katrina capable to explain the impor-
tant population size of 2005?), what about other factors
such as possible random errors of observation (under or
overestimation)? What about a validation of the model
based on other sets of observations?

Authors’ response: It is unclear what environmental
factors may be driving the population dynamics in 2005
and 2008. The possibility that part of the explanation may
involve Tropical Storm/Hurricane Katrina (which became
a hurricane just before making its first landfall in Florida,
after the center had passed the Bahamas) is very intrigu-
ing. Indeed, there were more hurricanes than average
(per year) between 2003 and 2005. Unfortunately, we have
no detailed understanding (from evidence) how hurricane
activity affects reproduction or survival of lemon sharks
in the Bimini lagoon, in particular how it could cause
the nursery population to spike high in 2005 (or low 3
years later). So really all we could do with this interesting
hypothesis at this time is report coincidences. There are
also a number of competing hypothesis of the cause of
environmental effects, and we propose several others in
the discussion. But again, our main point is not to iden-
tify the exact cause of what we claim is unexplained
variance, just that some of the variance is unexplained
by demographic stochasticity, and the likely culprit is
environmental stochasticity.

As for error in estimation (see also Dr. Hyrien's comments
below), the field techniques used to count sharks in the
nursery are exhaustive or nearly so (Gruber et al. 2001), so
we assume no under- or overestimation of the population
size for the early age classes. We clarify this point in the
revised manuscript.

As for validating with another set of data, we completely
agree, but argue that another model would be required for
validation (see below). At the moment, this is all the data
at hand, so further validation will require more time and
a great deal more effort, which is already nontrivial, in the
field.

The model validation is based only on simulations. From
a probabilistic point of view, knowledge of the branch-
ing process could help. For example, the behaviour of the
process, in particular its mortality, depends not only on
u but also on A(1 — [i). From a statistical point of view,
the “estimation” of the parameters is done first by choos-
ing a rough range of values containing, for each parameter,
its estimation derived from the litterature, s being set
to 1, which leads to 9000 different combinations of the
parameters, and second by refining this range of values
by comparing the empirical mean and variance derived
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from each of the 9000 models with the empirical mean and
variance derived from the observations.

Authors’ response: We completely agree. However, this
brings up an important point that we clarify in the
manuscript. Our bounds on the parameters apply only
to demographic variation, not environmental. In other
words, we offer bounds on births, deaths and density-
dependence during “normal” years. However, from the orig-
inal manuscript, “it is important to note that even for
parameter combinations that qualified as good fits, all
greatly underestimated annual variance observed in the
actual data’, because we claim that the model does not
capture relatively rare environmental events. Therefore, we
already expect that the model will not pass (strict) val-
idation. We return to and extend this point in the next
comment.

The authors should justify this approach compared to
other methods such as Bayesian analysis. This is an impor-
tant point for publication.

Authors’ response: We realized after reading the review-
ers’ comments that our rhetoric went beyond our analy-
sis. In fact, the Monte Carlo technique we employ does
not “parameterize” a model per se. Instead, it system-
atically samples parameter space to clarify bounds for
the parameters. It does not attempt to attach a proba-
bility or likelihood to a parameter value given the data
as likelihood and Bayesian techniques would, nor does it
attempt to optimize a formal fitting function as would a
genetic algorithm. We chose the technique we did out of a
desire to be conservative. Given the very limited informa-
tion about lemon sharks, especially demographics outside
the nursery, we have no model for variance, covariance
and (or) likelihood functions required by these other tech-
niques. Instead of adding another layer of uncertainty, we
chose this more direct, albeit weaker, technique. Another
important point is that, strictly speaking, these parame-
ter bounds are obtained under the assumption of time-
homogeneity of the stochastic process, an assumption we
argue is violated. That there appear only to be 2 outlier
years, and that we can match means and variances rea-
sonably well (although always underestimating the latter)
suggests our bounds are probably close, but perhaps biased.
So, we see our model as a first approximation to the
dynamics driven by demographics, and the bounds derived
for its parameters as a resource that can be used to define
a reasonable prior distribution for a subsequent Bayesian
analysis on an independent data set from this or a related
population.

Note also that the mean and variance of each data set
has some meaning only if the underlying process is sta-
tionary until its extinction, which is not guaranteed for all
parameter combinations.

Authors’ response: We agree, and addressed it the
original manuscript by fit criterion 3), “the population
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remained extant after 300 years in each of the 100 runs”.
Although we lack proof that the process is stationary,
this criteria effectively eliminates parameter combinations
for which the process is non-stationary, since in those
cases the process tends to run to the absorbing state
(extinction) within 300 time steps in at least one of the
100 runs.

The model described by (7) (“Model form and param-
eterization”) presents a crucial error: “x,(n + 1) = 1 —
M, _1(n)” is a null or negative quantity! I hope that this
is only a typographical error... (this error is also in the
preprint found on internet). This is a crucial point for
publication.

Authors’ response: It’s indeed a typo, which we have
corrected. See our response to Dr. Kuang’s comments.

2. Minor issues not for publication

1. In the abstract and the “Background”, the authors
start by pointing out the role of the anthropogenic mor-
tality on the population while the study concerns only the
natural mortality.

Authors’ response: Anthropogenic mortality is important
for many species of sharks and stingrays, but no known
anthropogenic mortality currently affects lemon sharks at
our study site. This makes this population interesting as a
test site for other species since we can examine dynamics
of a population that is not currently experiencing fishing
pressure, but has a natural history similar to many species
that are.

2. In “Background”, write “2012” instead of “present”.

3. In “Background” further, some quantities are
described beyond the location of their first appear-
ance, for example “the pattern oriented techniques” are
described only in the further section “Methods (Simula-
tions and analysis)”, and the parameters A, u, k, etc, are
described in the further section “Methods (Model)”.

4. In “Background” write “Poisson” instead of “Possion”.

Authors’ response: These points have been addressed in
the revised manuscript.

5. In “Background” further: Figure 5 is a bit strange
and not clear. In the same figure, the observed variance
and simulated box plots are represented (the scale of
these quantities differ). I would prefer simulated variances
instead of the box plots. Moreover the authors deduce
that the simulated variances tend to increase towards the
observed variance as the sample size increases while I only
see that the median (or the mean?) is increasing.

Authors’ response: In Figure 5, only variances are plotted.
Therefore, they are all on the same scale. The box plots
represent the distribution of variances obtained from 100
simulation rumns from each of which a sample of size
“Sampling Length” (indicated on the horizontal axis) has
been taken. (In essence, each box is a Monte Carlo esti-
mation of the sampling distribution of the variance for
samples of size “Sampling Length”.) For example, consider
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the box for “Sampling Length” 400 (the right-most box in
the figure). To construct that box, we start with a single
simulation of length 500 time points. We then threw out
the first 100 time points and calculated the variance of
the remaining 400. We repeated this procedure 99 times
to obtain 100 variances. The box plot shows the distribu-
tion of these 100 variances (median variance with quartiles
and outliers greater than 1.5 times the inner quartile
range from the edge of the box). We recognize that we did
not make our main argument clear enough. So, because
Figure 5 is central to our argument, we reiterate our think-
ing here and have tried to clarify it in the main text as
well. What we see in Figure 5 is an increase in the median
of the variances as the length of the “study” increases.
However, this median, indeed the inner quartile range,
never reaches the observed variance even for samples of
400 years. For samples of 20 years, nearly the length of
the field study, not one of the 100 simulations—not even
an outlier—generated a variance equal to or greater than
our observed variance (although 2 of 100 did for 10 year
samples—see Figure 5). If we lump the two sampling dis-
tributions of the variance for sample sizes nearest ours
(10 and 20), then the observed variance was exceeded in
only 2 of 200 simulation runs, suggesting a p-value no
larger than 0.01. So, the demographic model can gener-
ate, on occasion, variances that approach or exceed what
we observe in the field, but only with a reasonable prob-
ability for studies of at least 100 years, and even in the
best case (a 400 year study) it would be never more than
25% or so (being conservative). Therefore, the variance
from our sample of 17 years is unlikely to have been gen-
erated by demographic stochasticity. It is also unlikely to
have been generated by complex dynamics (which would
also have been captured in the model and is anyway
unlikely with such limited density-dependence). It is also
unlikely to be generated by the assumption of equal sex
ratios (see response to Dr. Hyrien’s comments). Therefore,
we are left with a diagnosis by exclusion—the most likely
candidate, in our opinion, for the higher than predicted
variance is environmental stochasticity. This conclusion is
further supported by the apparent outliers in 2005 and
2008.

And this leads to our take-home message—a 17 year
time series is long for a field study, but small in absolute
terms when taken from a population that exists thousands
of years at least. Yet even in this tiny sample, we find
significant environmental effects. This observation, along
with many others from longer field studies, we think points
to the importance of discussions regarding the usefulness
of demographic models for real field populations and the
timeliness of tackling the daunting problem of modeling
environmental forcing.

6. In “Discussion (Mortality assumptions)”, replace
“population-dependent” by “non-stationary”.



White et al. Biology Direct 2014, 9:23
http://www.biology-direct.com/content/9/1/23

7. Please do not put capital letters when uncessary
(ex: “Study Site and Field Data” should be replaced by
“Study site and field data”.

8. In “Methods (Mortality)”: “where we suppress the
dependence of fi...” should be replaced by “where we
suppress in the notation the dependence of fi...

9.In “Methods (Simulations and analysis)”: explain what
means “the middle 0.95 of the distribution”.

Authors’ response: These points have all been addressed
in the manuscript.

Dr. Ollivier Hyrien (Department of Biostatistics and
Computational Biology, University of Rochester)

This manuscript presents a model of the dynamics of
the population of juvenile sharks in the Bimini nursery in
the Bahamas. Previous demographic models of such pop-
ulations have considered age-structure and density depen-
dent mathematical models. All of them were deterministic
however, and this manuscript considers an age-structure,
stochastic model formulated as a discrete time Markov
chain.

The primary objective of the study is to investigate
the variability in the number of juvenile sharks observed
in the lagoon every year using the proposed stochas-
tic model. The main conclusion of the paper is that the
observed number of juvenile sharks, as estimated during
census, varies considerably more than when predicted by
the proposed model, and that the extra variability can be
attributed to environmental factors.

In my opinion, there is not enough evidence that such a
conclusion can be reached based on the data presented in
the manuscript.

The variance is estimated as ~ 498 sharks2 per year
based on data collected during yearly census. This esti-
mate is obtained based on 17 observations. By visually
extracting the values of the data from the plot, I find that
removal of the observation from 2005 decreases the vari-
ance to a value slightly above 200 sharks2, corresponding
to more than a 50% reduction in the count. The authors
can do exact calculations using the actual values, but the
point made here is that the 2005 observation has a high
influence on the point estimate for the variance of the
number of juvenile sharks in the lagoon per year. Thus, the
value of 498 for the variance may be an overestimation of
the actual value. At the least, the estimate should not be
used without a properly constructed confidence interval,
which may be quite wide since only 17 observations were
available.

Authors’ response: We completely agree that removal of
the data from 2005 decreases the variance considerably
(as does removal of 2008). Hence, we wrote in the original
manuscript (and have left untouched in the revision), “It
appears that the high and low points in this time series
(2005 and 2008, respectively) may be outliers. Removing
these points from the data set reduces s2 to 164.12 but
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leaves the mean at 75.13, both of which are in almost exact
agreement with simulation mean and variance at default
parameter settings” We disagree that the observed value is
an overestimation. We did not sufficiently emphasize the
exhaustive nature of the sampling (see above responses to
comments, manuscript and supporting literature). We are
really comparing the model prediction to an exhaustive
census. From our explanation of Figure 5 above and the
Monte Carlo analysis we performed, we conclude that
the model has a low probability (twice in 200 runs for
samples sizes bracketing ours (10 and 20)—see response
to comments above) of generating the observed census
variance.

The authors performed numerical simulations of the
population dynamics using their model. A summary of the
simulations is presented in Figure 5. The graph includes
boxplots of the 100 simulated values available each
year.

Authors’ response: This is incorrect, as we explain in
our response to Dr. Jacob’s comments. The box plots are
distributions of variances. Again, we attempt to make the
construction of Figure 5 more clear in the revision.

As discussed in the manuscript, the plot suggests clearly
an increase in the variance of the number of sharks as
time increases (time O seems to be the time of origin of
the simulation). There is no attempt at explaining why
the sample variance increased with the number of years
elapsed since the starts of the simulations. A plausible
explanations is that the initial conditions used to initiate
the Markov chain differs with the stationary distribution
of the chain, assuming that such a distribution exists.
There does not appear to be any description of how the
initial values of the process were specified.

Authors’ response: Again, we apologize for not making
our methodology sufficiently clear. In each simulation, the
initial conditions were always the same, and were chosen
to represent the best field estimates. Then each simulation
was run for at least 300 time points, and the first 100 time
points were removed to eliminate transients and allow the
process to settle into, or close to, its asymptotic dynamics.
We explain this more clearly in the revision.

In the original manuscript, we did in fact provide an
explanation of the phenomenon. From the original dis-
cussion: “Apparently, random walks to exceptionally large
or small population sizes, caused only by demographic
stochasticity, occur on time scales on the order of hundreds
of years. This observation further supports our predic-
tion that environmental stochasticity generates much of
the variance observed in the 17-year dataset we study
here”.

Also, why not use the variance at t = 400 instead of
t = 17 to make a comparison with the observed point esti-
mate of the variance computed from the real data (498)?
The value from the simulations seems to approach, if not
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exceed, 400, which is much closer to 498 than the value of
176 used in the discussion. It is unclear whether the vari-
ance of the process has approached its limiting value by
time t = 400. Various techniques exist to study the asymp-
totic distribution of Markov chains. They could be used
to derive the true value of the asymptotic variance of the
process.

Authors’ response: Again, this is a misinterpretation of
what we did, caused by our lack of clarity about Figure 5.
Our response to Dr. Jacob’s comments should clear this up.
One further clarification is in order here: for samples of
length 17 years, we performed 100 simulations. In each,
we ran the simulation for 300 years, removed the first
100 time points (as described above) and then chose a
continuous 17 year interval (pseudo)randomly from the
remaining 200 time points. Since this was done for each of
the 100 repeated simulations, we obtained 100 variances
to generate our estimate of the sampling distribution of
variances for samples of 17 years from the model. It’s this
distribution to which we compare the actual data.

As a side note, 100 runs appear rather small to study
a stochastic system via simulations. Were the simulations
very time consuming to run?

Authors’ response: Yes, the simulations were time
consuming so we only conducted 100 runs of (at least) 300
time points for each of the 9,000 parameter combinations
and all the various sampling lengths shown in Figure 5.

The model uses a Poisson distribution to describe the
number of pups per female (presumably per year). The
fitted distribution and the empirical histogram are plotted
together in Figure 2. Unlike stated in the manuscript, the
model does not provide an acceptable fit to the data. At
least, there is no p-value from a goodness-of-fit test pro-
vided to support the choice of this model. On page 5 (top),
the authors state that the Poisson assumption increased
the variance of the model (which I interpret as “increas-
ing the variance of the number of juvenile per year”)
compared to the model that uses the empirical distribu-
tion plotted in Figure 2. Since the empirical distribution
is likely less biased than the Poisson distribution, why
not use it? The values from the simulations based on the
empirical distribution were not reported. They should be
included in the manuscript.

Authors’ response: We wanted to test the Poisson assump-
tion against the empirical distribution of births, because
many field studies do not have access to an empirical
distribution of births. We say the model provides an accept-
able fit to the data, because there are several parameter
combinations (for both the Poisson and empirical distri-
butions) that produced distributions for the mean and
variance of population size from the simulations that
contained the field estimates of mean and variance.

The estimation procedure is barely described in the
manuscript. There exists a vast literature devoted to
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estimation for discrete time Markov chains, but no justifi-
cation/discussion is given about why the authors used an
inverse pattern-oriented technique.

Authors’ response: This is substantially the same point
Dr. Jacob brought up, and we deal with it at length in
response to her comments.

The variance in the simulation may also be underesti-
mated by the assumption of an equal sex ratio. What does
this assumption really mean? Is it per litter or is it per year?
How does it work with the assumption that the number
of pups per female is Poisson (and thus odds number of
pups may occur)? For example, does it mean that the num-
bers of pups per female were not mutually independent
(adjustment were needed to enforce the assumption)? Was
this assumption absolutely needed (since the authors are
using a simulation model which can be relatively easily
adapted)?

Authors’ response: The assumption of an equal sex ratio
in our study means an equal sex ratio in litters and
equal survival of males and females. This assumption is
supported on both empirical and theoretical grounds. It
doesn’t matter if an odd number of pups occurred in the lit-
ter, because we don’t distinguish the age classes by sex. We
simply assume that the entire adult population, divided
by two, should equal the number of potential reproducing
females. This assumption was not strictly needed, but we
weren't interested in the effect of males versus females, so it
was a simpler model. But this assumption is not the cause
of the underestimated variance since the population model
includes both males and females.

Finally, there is no precise explanation about how the
data were collected. A description of the sampling process
would be useful for the readers to determine whether
the values presented in Figure 1 are actual (exact) counts
obtained from exhaustive sampling of the nursery or
whether they correspond to estimates of the actual counts.
In the latter case, the point estimate of the variance (498)
is a biased estimator, which would overestimate the actual
variance since it combines both the sampling error and
the biological variability of the number of sharks present
in the nursery in any year.

Authors’ response: We agree that the details of the sam-
pling will clarify its exhaustive nature. However, a detailed
description already exists in well-cited literature, and
indeed the study is well-known among fisheries biologists.
Elucidation of the field methods here would be a bit
redundant and outside the scope of this paper, which
focuses on the model.

On page 14, the probability of My(n) = m should be
conditioned on xq (7).

Authors’ response: We agree and have made this correction.

As noted above, the main conclusion made by the
authors is that the difference in variance may be due to
environmental factors. While this statement may be true
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(as such factors do play a role in ecological systems), it is
not proven by the proposed study.

Authors’ response: We agree that we have not proven
anything, nor were we trying to. We do, however, continue
to defend our main point—it is unreasonable to conclude,
based on the extensive Monte Carlo methods we employ,
that the model sufficiently explains the observed variance
in the field. It is, however, reasonable to conclude the
converse. As we argue in response to Dr. Jacob’s comments,
we suggest that the model fails to capture this variance
because it is missing something vital. What's missing is
not complex dynamics. We are left with environmental
stochasticity, or an incorrect simplifying model assumption
as potential causes. But, since it appears that two (maybe
only one) year is generating the variance that the model
cannot explain (and the model explains the remaining
years well), we suggest environmental stochasticity as the
main cause.

I would also recommend the author to place the descrip-
tion of the model in the Results section. In the present
version, there are parameters that appear in the results
and discussion section that are not defined before (e.g.,
half saturation value).

Change the label of Figure 2 and Figure 3 since the latter
seems to be cited before the former in the text.

Authors’ response: We agree and have made these
changes. We thank all three reviewers for their detailed
and insightful comments. They have helped us greatly in
focusing our argument.

Reviewer report 2
Dr. Yang Kuang (School of Mathematics and Statistical
Sciences, Arizona State University)

The revised version is acceptable now.

Authors’ response: We appreciated your comments on the
first round of reviews.

Dr. Christine Jacob (Applied Mathematics and Infor-
matic unit (INRA), France)

Authors need to clarify the assumption of station-
arity before extinction, both for the data and for the
model. Since the model can be written as a BGW multi
type branching process whose types are the different age
classes, then the natural property for a BGW branching
process corresponding to some stability is criticality. For
a critical BGW process, the corresponding Q process
(process conditioned on the non-extinction in the distant
future) is stationary. This criticality corresponds to the
subset of parameter space such that the Perron’s root p of
the mean matrix of the process is equal to 1. So in order
to improve the simulations, that is in order to remove
this growth trend in the simulated variances in Figure 5,
it would be really worthwhile to restrict the parameters
estimates of the model to those belonging to this subset.
Otherwise the methodology is not accurate.
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Authors’ response: We completely agree with the reviewer
here. However, the numerics clearly supported stationarity
in the cases satisfying our “fit” criteria described in the
methods, so we have a high degree of confidence in the
result.

1. p. 4, line 13, what means “field estimates”

Authors’ response: Here “field estimates” mean the esti-
mate of the population mean and variance from the yearly
censuses. In the revised manuscript, we have included
“(census)” to make this point more clear.

2. p. 12 in paragraph Model, there are 2 different nota-
tions for x,(#), moreover x(n) and and “n” should not be
typo

Authors’ response: These typos have been fixed.

3. p. 13 R; should be written R;(7). The same for R

Authors’ response: These typos have been fixed.

4. write (x0(n))" instead of xg (1)"

Authors’ response: We have now made this change.

5. p. 14, last formula, write P({Mo(n) = m}|xo(n)) or
P(My(n) = m|xo(n)) instead of P({Mo(n) = m|xo(n)})

Authors’ response: We have now made this change.

6. p. 15 line 6, “the number of deaths”

Authors’ response: We have now made this change.

7. p. 27 the of Figure 2 correspond to Figure 3. Define
half saturation value in Figure 4 legend.

Authors’ response: We have adjusted the Figure 4 legend,
but do not see a problem with the Figures 2 and 3 legends.
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