Learning Objectives

Following this assignment students should be able to:

  • execute simple math in the R console
  • assign and manipulate variables
  • use built-in functions for math and stats
  • understand the assignment and execute flow of an R script
  • understand the vector and data frame object structures
  • assign, subset, and manipulate data in a vector
  • execute vector algebra
  • import data frames and interact with columns as vectors

Reading

Topics

  • R & RStudio
  • Expressions & Variables
  • Types
  • Errors
  • Vectors & Data Frames
  • Importing Data
  • Readable Code

Readings

Introduction to RStudio (choose one)

Introduction to R

Starting with Data

Lecture Notes

  1. Introduction
  2. Vectors

Exercises

  1. Basic Expressions (10 pts)

    Escriba los siguientes cálculos en el editor de texto.

    1. 2 - 10
    2. 3 * 5
    3. 9 / 2
    4. 5 - 3 * 2
    5. (5 - 3) * 2
    6. 4 ^ 2
    7. 8 / 2 ^ 2

    Ejecútelos haciendo clic en el botón Run en la esquina superior derecha del editor o presione Ctrl + Enter (Windows y Linux) o Command+Enter (Mac) para ejecutar e imprimir el código y los resultados en la consola.

    Si no hay código resaltado/seleccionado, se ejecutará la línea en la que se encuentra el cursor. Si resaltó / seleccionó un bloque de código, se ejecutará ese grupo de líneas.

    También puede ejecutar el ‘script’ completo haciendo clic en la flecha junto a Source y seleccionando Source with Echo o usando Ctrl + Shift + Enter (Windows y Linux) o Command+Shift+Enter (Mac).

    Agregue una línea de comentario que diga ‘Ejercicio 1’ antes del código que corresponde a el ejercicio. Los comentarios en R se agregan con el símbolo ‘#’. Cualquier texto luego de el símbolo ‘#’ en la misma línea se ignora cuando el programa se ejecuta. La primera parte de su programa debería verse así:

    # Exercise 1
    
    N.º 1.1
    2 - 10
    
    N.º 1.2
    3 * 5
    
    Expected outputs for Basic Expressions:
  2. Basic Expressions (10 pts)

    Write the following calculations in the text editor.

    1. 2 - 10
    2. 3 * 5
    3. 9 / 2
    4. 5 - 3 * 2
    5. (5 - 3) * 2
    6. 4 ^ 2
    7. 8 / 2 ^ 2

    Run them by either clicking the Run button in the top-right corner of the editor or press Ctrl+Enter (Windows & Linux) or Command+Enter (Mac) to run code and print the results in the console.

    If no code is highlighted/selected this will run the line the cursor is on. If you highlighted/selected a block of code it will run that entire group of lines.

    You can also run the entire script by clicking the arrow next to Source and selecting Source with Echo or by using Ctrl+Shift+Enter (Windows & Linux) or Command+Shift+Enter (Mac).

    To tell someone reading the code what this section of the code is about, add a comment line that says ‘Exercise 1’ before the code that answers the exercise. Comments in R are added by adding the # sign. Anything after a # sign on the same line is ignored when the program is run. So, the start of your program should look something like:

    # Exercise 1
    
    #1.1
    2 - 10
    
    #1.2
    3 * 5
    
    Expected outputs for Basic Expressions: 1
  3. Basic Variables (10 pts)

    Este es un pequeño programa que convierte una masa en kilogramos a una masa en gramos y luego imprime el resultado.

    mass_kg <- 2.62
    mass_g <- mass_kg * 1000
    mass_g
    

    Cree código similar a este para convertir una masa en libras a una masa en kilogramos.

    • Cree una variable para almacenar una masa corporal en libras. Asígnele un valor de 3.5 (aproximadamente el tamaño correcto para un [* Sylvilagus audubonii *] (https://en.wikipedia.org/wiki/Desert_Cottontail)).
    • Convierta la variable de masa corporal en libras a masa corporal en kilogramos (dividiéndola por 2.2046) y almacene este valor a una nueva variable.
    • Imprima el valor de la nueva variable en la pantalla.
    Expected outputs for Basic Variables:
  4. Basic Variables (10 pts)

    Here is a small program that converts a mass in kilograms to a mass in grams and then prints out the resulting value.

    mass_kg <- 2.62
    mass_g <- mass_kg * 1000
    mass_g
    

    Create similar code to convert a mass in pounds to a mass kilograms.

    • Create a variable to store a body mass in pounds. Assign this variable a value of 3.5 (an appropriate mass for a Sylvilagus audubonii).
    • Convert the variable from body mass in pounds to body mass in kilograms (by dividing it by 2.2046), and assign it to a new variable.
    • Print the value of the new variable to the screen.
    Expected outputs for Basic Variables: 1
  5. More Variables (10 pts)

    Calcule la biomasa total en gramos para 3 ([* Neotoma albigula *] (https://en.wikipedia.org/wiki/White-throated_woodrat)) y luego convierta la biomasa a kilogramos. La biomasa total es tres veces el peso promedio de un solo individuo. Un individuo promedio pesa 250 gramos.

    • Agregue una nueva sección a su R script comenzando con un comentario.
    • Cree una variable grams (gramos) y asígnele la masa de un solo Neotoma albigula (250).
    • Cree una variable number (número) y asígnele el número de individuos (3).
    • Cree una variable biomass (biomasa) y asígnele un valor multiplicando las variables grams (gramos) y number(número) juntas.
    • Convertir el valor de biomass(biomasa) en kilogramos (hay 1000 gramos en un kilogramo, así que divida entre 1000) y asigne este valor a una nueva variable.
    • Imprima la respuesta final en la pantalla.
    Expected outputs for More Variables:
  6. More Variables (10 pts)

    Calculate a total biomass in grams for 3 white-throated woodrats (Neotoma albigula) and then convert it to kilograms. The total biomass is three times the average size of a single individual. An average individual weighs 250 grams.

    • Add a new section to your R script starting with a comment.
    • Create a variable grams and assign it the mass of a single Neotoma albigula (250).
    • Create a variable number and assign it the number of individuals (3).
    • Create a variable biomass and assign it a value by multiplying the grams and number variables together.
    • Convert the value of biomass into kilograms (there are 1000 grams in a kilogram so divide by 1000) and assign this value to a new variable.
    • Print the final answer to the screen.
    Expected outputs for More Variables: 1
  7. Built-in Functions (10 pts)

    A built-in function is one that you don’t need to install and load a package to use. Some examples include:

    • abs() returns the absolute value of a number (e.g., abs(-2))
    • round(), rounds a number (the first argument) to a given number of decimal places (the second argument) (e.g., round(12.1123, 2))
    • sqrt(), takes the square root of a number (e.g., sqrt(4))
    • tolower(), makes a string all lower case (e.g., tolower("HELLO"))
    • toupper(), makes a string all upper case (e.g., toupper("hello"))

    Use these built-in functions to print the following items:

    1. The absolute value of -15.5.
    2. 4.483847 rounded to one decimal place.
    3. 3.8 rounded to the nearest integer. You don’t have to specify the number of decimal places in this case if you don’t want to, because round() will default to using 0 if the second argument is not provided. Look at help(round) or ?round to see how this is indicated.
    4. "species" in all capital letters.
    5. "SPECIES" in all lower case letters.
    6. Assign the value of the square root of 2.6 to a variable. Then round the variable you’ve created to 2 decimal places and assign it to another variable. Print out the rounded value.

    Optional Challenge: Do the same thing as task 6 (immediately above), but instead of creating the intermediate variable, perform both the square root and the round on a single line by putting the sqrt() call inside the round() call.

    Expected outputs for Built-in Functions: 1
  8. Modify the Code (15 pts)

    El siguiente código estima la productividad primaria neta total (NPP; PPB en español) por día para dos sitios. Lo hace multiplicando los gramos de carbono producidos en un solo metro cuadrado por día por el área total del sitio. Luego imprime el NPP diaria para cada sitio.

    site1_g_carbon_m2_day <- 5
    site2_g_carbon_m2_day <- 2.3
    site1_area_m2 <- 200
    site2_area_m2 <- 450
    site1_npp_day <- site1_g_carbon_m2_day * site1_area_m2
    site2_npp_day <- site2_g_carbon_m2_day * site2_area_m2
    site1_npp_day
    site2_npp_day
    

    Copie este código en su tarea. Luego agregue lineas de código que realicen los siguientes pasos e imprima el código después de la valores de NPP diarios (los que actualmente imprime el código):

    1. La suma de NPP diaria total para los dos sitios de estudio.
    2. La diferencia entre NPP diaria para los dos sitios de estudio. Queremos La diferencia absoluta, así que use la función abs () para asegurarse de que el número es positivo.
    3. El total de NPP durante un año para los dos sitios de estudio combinados (la suma de los valores diarios totaled de NPP de la parte (1) multiplicados por 365).
    Expected outputs for Modify the Code:
  9. Modify the Code (15 pts)

    The following code estimates the total net primary productivity (NPP) per day for two sites. It does this by multiplying the grams of carbon produced in a single square meter per day by the total area of the site. It then prints the daily NPP for each site.

    site1_g_carbon_m2_day <- 5
    site2_g_carbon_m2_day <- 2.3
    site1_area_m2 <- 200
    site2_area_m2 <- 450
    site1_npp_day <- site1_g_carbon_m2_day * site1_area_m2
    site2_npp_day <- site2_g_carbon_m2_day * site2_area_m2
    site1_npp_day
    site2_npp_day
    

    Copy this code into your assignment and then add additional lines of code to do the following steps and print them out after the daily NPP values (the ones currently printed by the code):

    1. The sum of the total daily NPP for the two sites.
    2. The difference between the daily NPP for the two sites. We only want an absolute difference, so use abs() function to make sure the number is positive.
    3. The total NPP over a year for the two sites combined (the sum of the total daily NPP values from part (1) multiplied by 365).
    Expected outputs for Modify the Code: 1
  10. Basic Vectors (15 pts)

    Corte y pegue el siguiente vector en su tarea y luego use print() para imprimir los valores solicitados en la pantalla.

    numbers <- c(5, 2, 26, 8, 16)
    
    1. El número de elementos en el vector numbers (usando la función length)
    2. El tercer elemento en el vector numbers (usando [])
    3. El número más pequeño en el vector numbers (usando la función min)
    4. El número más grande en el vector numbers (usando la función max)
    5. El promedio de los números en el vector numbers (usando la función mean)
    6. El primer, segundo y tercer número en el vector numbers (usando [])
    7. La suma de los valores en el vector numbers (usando la función sum)
    Expected outputs for Basic Vectors:
  11. Basic Vectors (15 pts)

    Cut and paste the following vector into your assignment and then use code to print the requested values related to the vector.

    numbers <- c(5, 2, 26, 8, 16)
    
    1. The number of items in the numbers vector (using the length function)
    2. The third item in the numbers vector (using [])
    3. The smallest number in the numbers vector (using the min function)
    4. The largest number in the numbers vector (using the max function)
    5. The average of the numbers in the numbers vector (using the mean function)
    6. The first, second and third numbers in the numbers vector (using [])
    7. The sum of the values in the numbers vector (using the sum function)
    Expected outputs for Basic Vectors: 1
  12. Nulls in Vectors (15 pts)

    Corte y pegue el siguiente vector en su tarea y luego use código para imprimir los valores solicitados en la pantalla. Use na.rm = TRUE para ignorar los valores nulos.

    numbers <- c(7, 6, 22, 5, NA, 42)
    
    1. El número más pequeño en el vector numbers
    2. El número más grande en el vector numbers
    3. El promedio de los números en los numbers
    4. La suma de los valores en el vector numbers
    Expected outputs for Nulls in Vectors:
  13. Nulls in Vectors (15 pts)

    Cut and paste the following vector into your assignment. Then use code to print the requested values related to the vector. You’ll need to use na.rm = TRUE to ignore the null values.

    numbers <- c(7, 6, 22, 5, NA, 42)
    
    1. The smallest number in the numbers vector
    2. The largest number in the numbers vector
    3. The average of the numbers in the numbers
    4. The sum of the values in the numbers vector
    Expected outputs for Nulls in Vectors: 1
  14. Shrub Volume Vectors (15 pts)

    Los siguientes vectores contienen datos individuales sobre el largo, ancho y alto de 10 tejos. [* Taxus baccata *] (https://es.wikipedia.org/wiki/Taxus_baccata):

    length <- c(2.2, 2.1, 2.7, 3.0, 3.1, 2.5, 1.9, 1.1, 3.5, 2.9)
    width <- c(1.3, 2.2, 1.5, 4.5, 3.1, NA, 1.8, 0.5, 2.0, 2.7)
    height <- c(9.6, 7.6, 2.2, 1.5, 4.0, 3.0, 4.5, 2.3, 7.5, 3.2)
    

    Copie estos vectores en un script de R y lleve acabo las siguientes premisas:

    1. El volumen de cada arbusto (largo x ancho x alto).
      • Almacenar estos volúmenes en una variable facilitará futuros cálculos *.
    2. La suma del volumen de todos los arbustos (use la función predeterminada sum()).
    3. Un vector que contenga la altura de los arbustos con longitudes > 2.5.
    4. Un vector que contenga la altura de los arbustos con alturas > 5.
    5. Un vector que contenga la altura de los primeros 5 arbustos (use la función predeterminada[]).
    6. Un vector que contenga los volúmenes de los primeros 3 arbustos (use []).

    Desafío opcional: Cree un vector que contenga los volúmenes de los últimos 5 arbustos. El código debe devolver los últimos 5 valores independientemente de la longitud del vector (i.e., devolverá los últimos 5 valores si aunque el vector contenga 10, 20 o 50 arbustos).

    Expected outputs for Shrub Volume Vectors:
  15. Shrub Volume Vectors (15 pts)

    You have data on the length, width, and height of 10 individuals of the yew Taxus baccata stored in the following vectors:

    length <- c(2.2, 2.1, 2.7, 3.0, 3.1, 2.5, 1.9, 1.1, 3.5, 2.9)
    width <- c(1.3, 2.2, 1.5, 4.5, 3.1, NA, 1.8, 0.5, 2.0, 2.7)
    height <- c(9.6, 7.6, 2.2, 1.5, 4.0, 3.0, 4.5, 2.3, 7.5, 3.2)
    

    Copy these vectors into an R script and then determine the following:

    1. The volume of each shrub (length × width × height). Storing this in a variable will make some of the next problems easier.
    2. The sum of the volume of all of the shrubs (using the sum function).
    3. A vector of the height of shrubs with lengths > 2.5.
    4. A vector of the height of shrubs with heights > 5.
    5. A vector of the heights of the first 5 shrubs (using []).
    6. A vector of the volumes of the first 3 shrubs (using []).

    Optional Challenge: A vector of the volumes of the last 5 shrubs with the code written so that it will return the last 5 values regardless of the length of the vector (i.e., it will give the last 5 values if their are 10, 20, or 50 individuals).

    Expected outputs for Shrub Volume Vectors: 1
  16. Variable Names (optional)

    En el ejercicio [Más sobre variables] (/data-science-biologists / ejercicios-es / Expressions-and-variables-more-variables-R-es) usamos los nombres de las variables grams (gramos), number(número) y biomass (biomasa) para describir la masa individual, número de individuos y biomasa total de algunas ratas de bosque de garganta blanca. Pero, ¿son estos nombres de variables la mejor opción? Si volviéramos al código para esta asignación en dos semanas, ¿recordariamos a qué se referían estas variables y, por lo tanto, qué estaba pasando en el código?

    El nombre de la variable “biomass” (biomasa) también es bastante largo. Si tuviéramos que escribirlo muchas veces, sería más rápido escribir b. También podríamos utilizar alternativas realmente descriptivas como individual_mass_in_grams(masa_de_individuo_en_gramos). Otra alternativa seria abreviar este nombre u omitir algunas de las palabras para hacer el nombre más corto (por ejemplo, indiv_mass_g)(masa_indiv_g).

    Piense en buenos nombres de variables y cree una nueva versión de este código con las variables renombradas para que sean más útiles. Asegúrese de que su código se ejecute correctamente con los cambios de nombre.

    Expected outputs for Variable Names:
  17. Variable Names (optional)

    In the More Variables exercise we used the variable names grams, number, and biomass to describe the individual mass, number of individuals, and total biomass of some white-throated woodrats. But are these variable names the best choice? If we came back to the code for this assignment in two weeks would we be able to remember what these variables were referring to and therefore what was going on in the code? The variable name biomass is also kind of long. If we had to type it many times it would be faster just to type b. We could also use really descriptive alternatives like individual_mass_in_grams. Or we would compromise and abbreviate this or leave out some of the words to make it shorter (e.g., indiv_mass_g).*

    Think about good variable names and then create a new version of this code with the variables renamed to be most useful. Make sure your code still runs properly with the name changes.

    Expected outputs for Variable Names:

Assignment submission & checklist